Deck 13: Vector Calculus

ملء الشاشة (f)
exit full mode
سؤال
Let F(x,y,z)=(x3+ysinz)i+(y3+z2sinz)j+(z3+x)k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y \sin z \right) \mathbf { i } + \left( y ^ { 3 } + z ^ { 2 } \sin z \right) \mathbf { j } + \left( z ^ { 3 } + x \right) \mathbf { k } and let S be the boundary surface of the solid E bounded by z=4x2y2,z=1x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } , z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , and z=0z = 0 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 62π5\frac { 62 \pi } { 5 }

B) π2\frac { \pi } { 2 }
C) π\pi
D) 4π3\frac { 4 \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
F) 192π5\frac { 192 \pi } { 5 }

G) 186π5\frac { 186 \pi } { 5 }

H) 4π4 \pi
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the flux of Find the flux of   across the surface of the solid bounded by   , and the planes   .<div style=padding-top: 35px> across the surface of the solid bounded by Find the flux of   across the surface of the solid bounded by   , and the planes   .<div style=padding-top: 35px> , and the planes Find the flux of   across the surface of the solid bounded by   , and the planes   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=sin(y2+z2)i+cos(x2+z2)j+ez2+y2k\mathbf { F } ( x , y , z ) = \sin \left( y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + \cos \left( x ^ { 2 } + z ^ { 2 } \right) \mathbf { j } + e ^ { z ^ { 2 } + y ^ { 2 } } \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) π4\frac { \pi } { 4 }
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) 2π3\frac { 2 \pi } { 3 }
F) 3π4\frac { 3 \pi } { 4 }

G) π\pi

H) 3π2\frac { 3 \pi } { 2 }
سؤال
Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) π2\frac { \pi } { 2 }
C) π\pi
D) 4π3\frac { 4 \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
F) 8π3\frac { 8 \pi } { 3 }

G) 2π2 \pi

H) 4π4 \pi
سؤال
Let F(x,y,z)=xyi\mathbf { F } ( x , y , z ) = x y i and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D)
12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F)
34\frac { 3 } { 4 }


G)
11

H) 32\frac { 3 } { 2 }
سؤال
Let F(x,y,z)=xi\mathbf { F } ( x , y , z ) = x \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
سؤال
Let Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the surface of the rectangular box bounded by the planes Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> , and Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Let Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the surface of the solid bounded by the spheres Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   .<div style=padding-top: 35px> and Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Evaluate Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal.<div style=padding-top: 35px> , where S is the cube bounded by the planes Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal.<div style=padding-top: 35px> and Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal.<div style=padding-top: 35px> , and n is the outward normal.
سؤال
Let Let   and let S be the surface with equation   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the surface with equation Let   and let S be the surface with equation   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the surface with equation   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=xy2i\mathbf { F } ( x , y , z ) = x y ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F)
34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
سؤال
Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y - 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the surface of the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 , bounded by the planes z=0z = 0 and z=3z = 3 .

A) 12π12 \pi

B) 4π4 \pi
C) 3π- 3 \pi
D) 6π6 \pi
E) 12π- 12 \pi
F) 4π- 4 \pi

G) 3π3 \pi

H) 6π- 6 \pi
سؤال
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> plane.
سؤال
Let Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the surface of the tetrahedron with vertices Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> , and Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=i\mathbf { F } ( x , y , z ) = \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H)
32\frac { 3 } { 2 }
سؤال
Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y+1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y + 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 .

A) 4π- 4 \pi

B) 4π3\frac { 4 \pi } { 3 }
C) 3π2- \frac { 3 \pi } { 2 }
D) 11
E) 4π4 \pi
F) 4π3- \frac { 4 \pi } { 3 }

G) 3π2\frac { 3 \pi } { 2 }

H) 2π3\frac { 2 \pi } { 3 }
سؤال
Let F(x,y,z)=x2i\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D)
12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
سؤال
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Evaluate the flux integral Evaluate the flux integral   over the boundary of the ball   .<div style=padding-top: 35px> over the boundary of the ball Evaluate the flux integral   over the boundary of the ball   .<div style=padding-top: 35px> .
سؤال
Evaluate Evaluate   , where S is the boundary surface of the solid sphere   and  <div style=padding-top: 35px> , where S is the boundary surface of the solid sphere Evaluate   , where S is the boundary surface of the solid sphere   and  <div style=padding-top: 35px> and Evaluate   , where S is the boundary surface of the solid sphere   and  <div style=padding-top: 35px>
سؤال
Evaluate Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   .<div style=padding-top: 35px> , where S is the boundary surface of the region outside the sphere Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   .<div style=padding-top: 35px> and inside the ball Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   .<div style=padding-top: 35px> and Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=2xy3z4i+3x2y2z4j+4x2y3z3k\mathbf { F } ( x , y , z ) = 2 x y ^ { 3 } z ^ { 4 } \mathbf { i } + 3 x ^ { 2 } y ^ { 2 } z ^ { 4 } \mathbf { j } + 4 x ^ { 2 } y ^ { 3 } z ^ { 3 } \mathbf { k } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , \quad 0 \leq t \leq 2 \pi .

A) π\pi

B) π2\pi \sqrt { 2 }
C) π3\pi \sqrt { 3 }
D) 2π2 \pi
E) 22π\frac { \sqrt { 2 } } { 2 } \pi
F) 32π\frac { \sqrt { 3 } } { 2 } \pi

G) π2\frac { \pi } { 2 }

H) 00
سؤال
Let S be the outwardly-oriented surface of a solid region E where the volume of E is Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   .<div style=padding-top: 35px> . If Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   .<div style=padding-top: 35px> and Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   .<div style=padding-top: 35px> , evaluate the surface integral Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3cost,y=3sint,z=2,0t2πx = 3 \cos t , y = 3 \sin t , z = 2,0 \leq t \leq 2 \pi .

A) 27π27 \pi

B) 99π99 \pi
C) 18π18 \pi
D) 54π54 \pi
E) 27π- 27 \pi
F) 99π- 99 \pi

G) 18π- 18 \pi

H) 54π- 54 \pi
سؤال
Evaluate Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> , where Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> and S is the sphere Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> .
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward.<div style=padding-top: 35px> where Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward.<div style=padding-top: 35px> and S is the part of the paraboloid Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward.<div style=padding-top: 35px> that lies inside the cylinder Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward.<div style=padding-top: 35px> , oriented upward.
سؤال
Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , 0 \leq \mathrm { t } \leq 2 \pi .

A) π\pi

B) π2\pi \sqrt { 2 }
C) π3\pi \sqrt { 3 }
D) 2π2 \pi
E) 22π\frac { \sqrt { 2 } } { 2 } \pi
F) 32π\frac { \sqrt { 3 } } { 2 } \pi

G) π2\frac { \pi } { 2 }

H) π4\frac { \pi } { 4 }
سؤال
Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the rectangular path from (0,0,0)( 0,0,0 ) to (1,0,1)( 1,0,1 ) to (1,1,1)( 1,1,1 ) to (0,1,0)( 0,1,0 ) to (0,0,0)( 0,0,0 ) .

A) 11

B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }

G) 12\frac { 1 } { 2 }

H) 14\frac { 1 } { 4 }
سؤال
Let F(x,y,z)=yj+xj+ez2k\mathbf { F } ( x , y , z ) = - y \mathbf { j } + x \mathbf { j } + e ^ { z ^ { 2 } } \mathbf { k } . Evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot \mathrm { d } \mathbf { S } over the surface S given by z=1x2y2z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , with downward orientation.

A) 2π2 \pi

B) π\pi
C) π2\frac { \pi } { 2 }
D) 3π3 \pi
E) 2π- 2 \pi
F) π- \pi

G) π2- \frac { \pi } { 2 }

H) 3π- 3 \pi
سؤال
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> plane.
سؤال
Evaluate Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> , where Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> and S is the sphere Evaluate   , where   and S is the sphere   .<div style=padding-top: 35px> .
سؤال
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane.<div style=padding-top: 35px> plane.
سؤال
Let Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> . Let C be the rectangular path from Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> . Use Stokes' Theorem to evaluate the line integral Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C.<div style=padding-top: 35px> , where T is the unit tangent vector to C.
سؤال
Find the flux of Find the flux of   across the surface of the solid   .<div style=padding-top: 35px> across the surface of the solid Find the flux of   across the surface of the solid   .<div style=padding-top: 35px> .
سؤال
Evaluate Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   .<div style=padding-top: 35px> , where the path C is the curve of intersection of the paraboloid Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   .<div style=padding-top: 35px> with the plane Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=xi+yj+zk(x2+y2+z2)3/2\mathbf { F } ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is the curve of intersection of the paraboloid x2+y2=2zx ^ { 2 } + y ^ { 2 } = 2 z and the cylinder x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x .

A) 11

B) 1- 1
C) 2\sqrt { 2 }
D) 2- \sqrt { 2 }
E) 3\sqrt { 3 }
F) 3- \sqrt { 3 }

G) 22

H) 00
سؤال
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3sint,y=3cost,z=2,0t2πx = 3 \sin t , y = 3 \cos t , z = 2,0 \leq t \leq 2 \pi .

A) 27π27 \pi

B) 99π99 \pi
C) 18π18 \pi
D) 54π54 \pi
E) 27π- 27 \pi
F) 99π- 99 \pi

G) 18π- 18 \pi

H) 54π- 54 \pi
سؤال
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the triangle with vertices (1,0,0),(0.1.0)( 1,0,0 ) , ( 0.1 .0 ) , and (0.0.1)( 0.0 .1 ) , oriented counter clockwise as viewed from above.

A) 11- 11

B) 112- \frac { 11 } { 2 }
C) 72- \frac { 7 } { 2 }
D) 77
E) 1111
F) 112\frac { 11 } { 2 }

G) 72\frac { 7 } { 2 }

H) 7- 7
سؤال
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   .<div style=padding-top: 35px> .
سؤال
A surface has the shape of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between z=0z = 0 and z=1z = 1 with the density function ρ(x,y,z)=1z\rho ( x , y , z ) = 1 - z . Find the mass of the surface.

A) 2π\sqrt { 2 } \pi
B) 2π3\frac { \sqrt { 2 } \pi } { 3 }
C) 66

D) 11
E) 22π2 \sqrt { 2 } \pi
F) 2π2 \pi
G) 22π3\frac { 2 \sqrt { 2 } \pi } { 3 }
H) 00
سؤال
Consider the surfaces Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ?<div style=padding-top: 35px> : Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ?<div style=padding-top: 35px> , and Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ?<div style=padding-top: 35px> : Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ?<div style=padding-top: 35px> , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ?<div style=padding-top: 35px> ?
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> , where C is the triangle with vertices Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> , and Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> , oriented counterclockwise as viewed from above.
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis.<div style=padding-top: 35px> where Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis.<div style=padding-top: 35px> and S is the part of the hemisphere Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis.<div style=padding-top: 35px> that lies inside the cylinder Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis.<div style=padding-top: 35px> , oriented in the direction of the positive x-axis.
سؤال
Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=xi+yj+xk\mathbf { F } = x \mathbf { i } + y \mathbf { j } + x \mathbf { k } and S is the part of the plane z=1xyz = 1 - x - y in the first octant with downward orientation.

A) 13\frac { 1 } { 3 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 11
E) 13- \frac { 1 } { 3 }
F) 12- \frac { 1 } { 2 }
G) 14- \frac { 1 } { 4 }
H) 1- 1
سؤال
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yj+zk\mathbf { F } = ( x , y , z ) = y \mathbf { j } + z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

A) 1616
B) 88
C) 8- 8
D) 11
E) 3232
F) 44
G) 4- 4
H) 00
سؤال
Evaluate the surface integral S(x+y+z)dS\iint _ { S } ( x + y + z ) d S , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) .

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 32\frac { 3 } { 2 }
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 23\frac { \sqrt { 2 } } { 3 }
H) 322\frac { 3 \sqrt { 2 } } { 2 }
سؤال
Verify that Stokes' Theorem is true for the vector field Verify that Stokes' Theorem is true for the vector field   and the cone   , oriented upward.<div style=padding-top: 35px> and the cone Verify that Stokes' Theorem is true for the vector field   and the cone   , oriented upward.<div style=padding-top: 35px> , oriented upward.
سؤال
Let F(x,y,z)=k\mathbf { F } ( x , y , z ) = \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 12\frac { 1 } { 2 }
H) 14\frac { 1 } { 4 }
سؤال
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F=(x,y,z)=xi+yj+zk\mathbf { F } = ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is the part of the surface z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y - plane and has upward orientation.

A) 3π- 3 \pi
B) 3π4- \frac { 3 \pi } { 4 }

C) 3π2- \frac { 3 \pi } { 2 }
D) 11
E) 3π3 \pi
F) 3π4\frac { 3 \pi } { 4 }
G) 3π2\frac { 3 \pi } { 2 }
H) 4π3\frac { 4 \pi } { 3 }
سؤال
Let S be the parametric surface Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   .<div style=padding-top: 35px> . Use Stokes' Theorem to evaluate Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   .<div style=padding-top: 35px> , where Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   .<div style=padding-top: 35px> .
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> , where C is the curve of intersection of the paraboloid Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> and the cylinder Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above.<div style=padding-top: 35px> , oriented counterclockwise as viewed from above.
سؤال
An upper hemisphere is given by z=16x2y2z = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } with the density function ρ(x,y,z)=z\rho ( x , y , z ) = z . Find the mass of the sphere.

A) 32π32 \pi
B) 8π8 \pi
C) 64π64 \pi
D) 11
E) 16π16 \pi
F) 4π4 \pi
G) 32π3\frac { 32 \pi } { 3 }
H) 64π3\frac { 64 \pi } { 3 }
سؤال
Evaluate the surface integral Evaluate the surface integral   , where S is the triangle with vertices   , and  <div style=padding-top: 35px> , where S is the triangle with vertices Evaluate the surface integral   , where S is the triangle with vertices   , and  <div style=padding-top: 35px> , and Evaluate the surface integral   , where S is the triangle with vertices   , and  <div style=padding-top: 35px>
سؤال
Let F(x,y,z)=xk\mathbf { F } ( x , y , z ) = x \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 12\frac { 1 } { 2 }
H) 14\frac { 1 } { 4 }
سؤال
Evaluate the surface integral SzdS\iint _ { S } z d S , where S is that part of the cylinder z=1x2z = \sqrt { 1 - x ^ { 2 } } that lies above the square with vertices (1,1),(1,1),(1,1)( - 1 , - 1 ) , ( 1 , - 1 ) , ( - 1,1 ) , and (1,1)( 1,1 ) .

A) 2\sqrt { 2 }
B) 22
C) 8\sqrt { 8 }
D) 44
E) π\pi
F) 2π2 \pi
G) 4π4 \pi
H) 8π8 \pi
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   .<div style=padding-top: 35px> where Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   .<div style=padding-top: 35px> and C is the curve of intersection of the plane Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   .<div style=padding-top: 35px> and the cylinder Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   .<div style=padding-top: 35px> .
سؤال
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yjzk\mathbf { F } = ( x , y , z ) = y \mathbf { j } - z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

A) 1616
B) 88
C) 8- 8
D) 11
E) 3232
F) 44
G) 4- 4
H) 00
سؤال
Evaluate the surface integral SxdS\iint _ { S } x d S , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) .

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D)2
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 23\frac { \sqrt { 2 } } { 3 }
H) 33\frac { \sqrt { 3 } } { 3 }
سؤال
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  <div style=padding-top: 35px> where Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  <div style=padding-top: 35px> and C is the triangle with vertices Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  <div style=padding-top: 35px> , and Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  <div style=padding-top: 35px>
سؤال
A fluid has density 1500 and velocity field A fluid has density 1500 and velocity field   . Find the rate of flow outward through the sphere   .<div style=padding-top: 35px> . Find the rate of flow outward through the sphere A fluid has density 1500 and velocity field   . Find the rate of flow outward through the sphere   .<div style=padding-top: 35px> .
سؤال
Evaluate Evaluate   , where   and S is the upper half of the sphere   , with upward orientation.<div style=padding-top: 35px> , where Evaluate   , where   and S is the upper half of the sphere   , with upward orientation.<div style=padding-top: 35px> and S is the upper half of the sphere Evaluate   , where   and S is the upper half of the sphere   , with upward orientation.<div style=padding-top: 35px> , with upward orientation.
سؤال
Evaluate the surface integral Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation.<div style=padding-top: 35px> for the vector field Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation.<div style=padding-top: 35px> where S is part of the cone Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation.<div style=padding-top: 35px> between the planes z = 1 and z = 2 with upward orientation.
سؤال
Evaluate the flux of the vector field Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  <div style=padding-top: 35px> through the plane region with the given orientation as shown below. Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  <div style=padding-top: 35px>
سؤال
Evaluate Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation.<div style=padding-top: 35px> where Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation.<div style=padding-top: 35px> and S is the part of the surface Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation.<div style=padding-top: 35px> that lies above the rectangle Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation.<div style=padding-top: 35px> and has upward orientation.
سؤال
Evaluate the surface integral Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   .<div style=padding-top: 35px> , where S is the part of the sphere Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   .<div style=padding-top: 35px> that lies above the cone Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   .<div style=padding-top: 35px> .
سؤال
Evaluate the surface integral Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   .<div style=padding-top: 35px> , where S is the part of the paraboloid Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   .<div style=padding-top: 35px> that lies in front of the plane Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   .<div style=padding-top: 35px> .
سؤال
Compute the surface integral Compute the surface integral   if   and S is the piece of the sphere   in the second octant   .<div style=padding-top: 35px> if Compute the surface integral   if   and S is the piece of the sphere   in the second octant   .<div style=padding-top: 35px> and S is the piece of the sphere Compute the surface integral   if   and S is the piece of the sphere   in the second octant   .<div style=padding-top: 35px> in the second octant Compute the surface integral   if   and S is the piece of the sphere   in the second octant   .<div style=padding-top: 35px> .
سؤال
Consider the top half of the ellipsoid Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward.<div style=padding-top: 35px> parametrized by Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward.<div style=padding-top: 35px> . Find a normal vector N at the point determined by Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward.<div style=padding-top: 35px> , and determine if it is upward and/or outward.
سؤال
Evaluate the flux of the vector field Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  <div style=padding-top: 35px> through the plane region with the given orientation as shown below. Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  <div style=padding-top: 35px>
سؤال
Evaluate the surface integral Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation.<div style=padding-top: 35px> for the vector field Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation.<div style=padding-top: 35px> , where S is the hemisphere Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation.<div style=padding-top: 35px> with upward orientation.
سؤال
Find the flux of the vector field Find the flux of the vector field   across the paraboloid given by   with   and upward orientation:<div style=padding-top: 35px> across the paraboloid given by Find the flux of the vector field   across the paraboloid given by   with   and upward orientation:<div style=padding-top: 35px> with Find the flux of the vector field   across the paraboloid given by   with   and upward orientation:<div style=padding-top: 35px> and upward orientation:
سؤال
Find the z-coordinate of the centroid of the upper hemisphere with uniform density whose equation is given by Find the z-coordinate of the centroid of the upper hemisphere with uniform density whose equation is given by   .<div style=padding-top: 35px> .
سؤال
Find the mass of the sphere Find the mass of the sphere   whose density at each point is proportional to its distance to the   plane.<div style=padding-top: 35px> whose density at each point is proportional to its distance to the Find the mass of the sphere   whose density at each point is proportional to its distance to the   plane.<div style=padding-top: 35px> plane.
سؤال
Evaluate Evaluate   , where S is the part of the surface   that lies between the cylinders   and   .<div style=padding-top: 35px> , where S is the part of the surface Evaluate   , where S is the part of the surface   that lies between the cylinders   and   .<div style=padding-top: 35px> that lies between the cylinders Evaluate   , where S is the part of the surface   that lies between the cylinders   and   .<div style=padding-top: 35px> and Evaluate   , where S is the part of the surface   that lies between the cylinders   and   .<div style=padding-top: 35px> .
سؤال
Evaluate Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation.<div style=padding-top: 35px> , where Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation.<div style=padding-top: 35px> and S is the part of the surface Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation.<div style=padding-top: 35px> below the plane Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation.<div style=padding-top: 35px> , with upward orientation.
سؤال
Evaluate the surface integral Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation.<div style=padding-top: 35px> for the vector field Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation.<div style=padding-top: 35px> where S is the part of the elliptic paraboloid Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation.<div style=padding-top: 35px> that lies below the square Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation.<div style=padding-top: 35px> and has downward orientation.
سؤال
Let F(x,y,z)=zi+xj+yk\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } . Find the curl of F.

A) i
B) j
C) k\mathbf { k }
D) i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k }
E) i- \mathbf { i }
F) j- j
G) k- \mathbf { k }
H) ijk- \mathbf { i } - \mathbf { j } - \mathbf { k }
سؤال
Find the mass of a thin funnel in the shape of a cone Find the mass of a thin funnel in the shape of a cone   , is its density function is   .<div style=padding-top: 35px> , is its density
function is Find the mass of a thin funnel in the shape of a cone   , is its density function is   .<div style=padding-top: 35px> .
سؤال
Let F(x,y,z)=yixj\mathbf { F } ( x , y , z ) = y \mathbf { i } - x \mathbf { j } . Find the curl of F.

A) 2i2i
B) 2j2 \mathrm { j }
C) 2k2 \mathbf { k }
D) 2i+2j+2k2 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
E) 2i- 2 \mathbf { i }
F) 2j- 2 j
G) 2k- 2 \mathbf { k }
H) 2i2j2k- 2 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/240
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Vector Calculus
1
Let F(x,y,z)=(x3+ysinz)i+(y3+z2sinz)j+(z3+x)k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y \sin z \right) \mathbf { i } + \left( y ^ { 3 } + z ^ { 2 } \sin z \right) \mathbf { j } + \left( z ^ { 3 } + x \right) \mathbf { k } and let S be the boundary surface of the solid E bounded by z=4x2y2,z=1x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } , z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , and z=0z = 0 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 62π5\frac { 62 \pi } { 5 }

B) π2\frac { \pi } { 2 }
C) π\pi
D) 4π3\frac { 4 \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
F) 192π5\frac { 192 \pi } { 5 }

G) 186π5\frac { 186 \pi } { 5 }

H) 4π4 \pi
186π5\frac { 186 \pi } { 5 }
2
Find the flux of Find the flux of   across the surface of the solid bounded by   , and the planes   . across the surface of the solid bounded by Find the flux of   across the surface of the solid bounded by   , and the planes   . , and the planes Find the flux of   across the surface of the solid bounded by   , and the planes   . .
3
Let F(x,y,z)=sin(y2+z2)i+cos(x2+z2)j+ez2+y2k\mathbf { F } ( x , y , z ) = \sin \left( y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + \cos \left( x ^ { 2 } + z ^ { 2 } \right) \mathbf { j } + e ^ { z ^ { 2 } + y ^ { 2 } } \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) π4\frac { \pi } { 4 }
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) 2π3\frac { 2 \pi } { 3 }
F) 3π4\frac { 3 \pi } { 4 }

G) π\pi

H) 3π2\frac { 3 \pi } { 2 }
00
4
Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) π2\frac { \pi } { 2 }
C) π\pi
D) 4π3\frac { 4 \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
F) 8π3\frac { 8 \pi } { 3 }

G) 2π2 \pi

H) 4π4 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
5
Let F(x,y,z)=xyi\mathbf { F } ( x , y , z ) = x y i and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D)
12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F)
34\frac { 3 } { 4 }


G)
11

H) 32\frac { 3 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
6
Let F(x,y,z)=xi\mathbf { F } ( x , y , z ) = x \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
7
Let Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   . and let S be the surface of the rectangular box bounded by the planes Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   . , and Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the surface of the rectangular box bounded by the planes   , and   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
8
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
9
Let Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   . and let S be the surface of the solid bounded by the spheres Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   . and Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the surface of the solid bounded by the spheres   and   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
10
Evaluate Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal. , where S is the cube bounded by the planes Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal. and Evaluate   , where S is the cube bounded by the planes   and   , and n is the outward normal. , and n is the outward normal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
11
Let Let   and let S be the surface with equation   . Evaluate the surface integral   . and let S be the surface with equation Let   and let S be the surface with equation   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the surface with equation   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
12
Let F(x,y,z)=xy2i\mathbf { F } ( x , y , z ) = x y ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F)
34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y - 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the surface of the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 , bounded by the planes z=0z = 0 and z=3z = 3 .

A) 12π12 \pi

B) 4π4 \pi
C) 3π- 3 \pi
D) 6π6 \pi
E) 12π- 12 \pi
F) 4π- 4 \pi

G) 3π3 \pi

H) 6π- 6 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
15
Let Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   . and let S be the surface of the tetrahedron with vertices Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   . , and Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the surface of the tetrahedron with vertices   , and   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
16
Let F(x,y,z)=i\mathbf { F } ( x , y , z ) = \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H)
32\frac { 3 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
17
Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y+1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y + 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 .

A) 4π- 4 \pi

B) 4π3\frac { 4 \pi } { 3 }
C) 3π2- \frac { 3 \pi } { 2 }
D) 11
E) 4π4 \pi
F) 4π3- \frac { 4 \pi } { 3 }

G) 3π2\frac { 3 \pi } { 2 }

H) 2π3\frac { 2 \pi } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
18
Let F(x,y,z)=x2i\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

A) 00

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D)
12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 11

H) 32\frac { 3 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
19
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
20
Evaluate the flux integral Evaluate the flux integral   over the boundary of the ball   . over the boundary of the ball Evaluate the flux integral   over the boundary of the ball   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
21
Evaluate Evaluate   , where S is the boundary surface of the solid sphere   and  , where S is the boundary surface of the solid sphere Evaluate   , where S is the boundary surface of the solid sphere   and  and Evaluate   , where S is the boundary surface of the solid sphere   and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
22
Evaluate Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   . , where S is the boundary surface of the region outside the sphere Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   . and inside the ball Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   . and Evaluate   , where S is the boundary surface of the region outside the sphere   and inside the ball   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
23
Let F(x,y,z)=2xy3z4i+3x2y2z4j+4x2y3z3k\mathbf { F } ( x , y , z ) = 2 x y ^ { 3 } z ^ { 4 } \mathbf { i } + 3 x ^ { 2 } y ^ { 2 } z ^ { 4 } \mathbf { j } + 4 x ^ { 2 } y ^ { 3 } z ^ { 3 } \mathbf { k } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , \quad 0 \leq t \leq 2 \pi .

A) π\pi

B) π2\pi \sqrt { 2 }
C) π3\pi \sqrt { 3 }
D) 2π2 \pi
E) 22π\frac { \sqrt { 2 } } { 2 } \pi
F) 32π\frac { \sqrt { 3 } } { 2 } \pi

G) π2\frac { \pi } { 2 }

H) 00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
24
Let S be the outwardly-oriented surface of a solid region E where the volume of E is Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   . . If Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   . and Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   . , evaluate the surface integral Let S be the outwardly-oriented surface of a solid region E where the volume of E is   . If   and   , evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3cost,y=3sint,z=2,0t2πx = 3 \cos t , y = 3 \sin t , z = 2,0 \leq t \leq 2 \pi .

A) 27π27 \pi

B) 99π99 \pi
C) 18π18 \pi
D) 54π54 \pi
E) 27π- 27 \pi
F) 99π- 99 \pi

G) 18π- 18 \pi

H) 54π- 54 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
26
Evaluate Evaluate   , where   and S is the sphere   . , where Evaluate   , where   and S is the sphere   . and S is the sphere Evaluate   , where   and S is the sphere   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward. where Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward. and S is the part of the paraboloid Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward. that lies inside the cylinder Use Stokes' Theorem to evaluate   where   and S is the part of the paraboloid   that lies inside the cylinder   , oriented upward. , oriented upward.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
28
Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , 0 \leq \mathrm { t } \leq 2 \pi .

A) π\pi

B) π2\pi \sqrt { 2 }
C) π3\pi \sqrt { 3 }
D) 2π2 \pi
E) 22π\frac { \sqrt { 2 } } { 2 } \pi
F) 32π\frac { \sqrt { 3 } } { 2 } \pi

G) π2\frac { \pi } { 2 }

H) π4\frac { \pi } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
29
Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the rectangular path from (0,0,0)( 0,0,0 ) to (1,0,1)( 1,0,1 ) to (1,1,1)( 1,1,1 ) to (0,1,0)( 0,1,0 ) to (0,0,0)( 0,0,0 ) .

A) 11

B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }

G) 12\frac { 1 } { 2 }

H) 14\frac { 1 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
30
Let F(x,y,z)=yj+xj+ez2k\mathbf { F } ( x , y , z ) = - y \mathbf { j } + x \mathbf { j } + e ^ { z ^ { 2 } } \mathbf { k } . Evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot \mathrm { d } \mathbf { S } over the surface S given by z=1x2y2z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , with downward orientation.

A) 2π2 \pi

B) π\pi
C) π2\frac { \pi } { 2 }
D) 3π3 \pi
E) 2π- 2 \pi
F) π- \pi

G) π2- \frac { \pi } { 2 }

H) 3π- 3 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
32
Evaluate Evaluate   , where   and S is the sphere   . , where Evaluate   , where   and S is the sphere   . and S is the sphere Evaluate   , where   and S is the sphere   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the flux of Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. across the surface of the solid bounded by the paraboloid Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. and the Find the flux of   across the surface of the solid bounded by the paraboloid   and the   plane. plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
34
Let Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. . Let C be the rectangular path from Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. to Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. . Use Stokes' Theorem to evaluate the line integral Let   . Let C be the rectangular path from   to   to   to   to   . Use Stokes' Theorem to evaluate the line integral   , where T is the unit tangent vector to C. , where T is the unit tangent vector to C.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the flux of Find the flux of   across the surface of the solid   . across the surface of the solid Find the flux of   across the surface of the solid   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
36
Evaluate Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   . , where the path C is the curve of intersection of the paraboloid Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   . with the plane Evaluate   , where the path C is the curve of intersection of the paraboloid   with the plane   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
37
Let F(x,y,z)=xi+yj+zk(x2+y2+z2)3/2\mathbf { F } ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is the curve of intersection of the paraboloid x2+y2=2zx ^ { 2 } + y ^ { 2 } = 2 z and the cylinder x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x .

A) 11

B) 1- 1
C) 2\sqrt { 2 }
D) 2- \sqrt { 2 }
E) 3\sqrt { 3 }
F) 3- \sqrt { 3 }

G) 22

H) 00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3sint,y=3cost,z=2,0t2πx = 3 \sin t , y = 3 \cos t , z = 2,0 \leq t \leq 2 \pi .

A) 27π27 \pi

B) 99π99 \pi
C) 18π18 \pi
D) 54π54 \pi
E) 27π- 27 \pi
F) 99π- 99 \pi

G) 18π- 18 \pi

H) 54π- 54 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
39
Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the triangle with vertices (1,0,0),(0.1.0)( 1,0,0 ) , ( 0.1 .0 ) , and (0.0.1)( 0.0 .1 ) , oriented counter clockwise as viewed from above.

A) 11- 11

B) 112- \frac { 11 } { 2 }
C) 72- \frac { 7 } { 2 }
D) 77
E) 1111
F) 112\frac { 11 } { 2 }

G) 72\frac { 7 } { 2 }

H) 7- 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
40
Let Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . and let S be the boundary surface of the solid Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . . Evaluate the surface integral Let   and let S be the boundary surface of the solid   . Evaluate the surface integral   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
41
A surface has the shape of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between z=0z = 0 and z=1z = 1 with the density function ρ(x,y,z)=1z\rho ( x , y , z ) = 1 - z . Find the mass of the surface.

A) 2π\sqrt { 2 } \pi
B) 2π3\frac { \sqrt { 2 } \pi } { 3 }
C) 66

D) 11
E) 22π2 \sqrt { 2 } \pi
F) 2π2 \pi
G) 22π3\frac { 2 \sqrt { 2 } \pi } { 3 }
H) 00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
42
Consider the surfaces Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ? : Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ? , and Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ? : Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ? , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that Consider the surfaces   :   , and   :   , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that   ? ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
43
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above. , where C is the triangle with vertices Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above. , and Use Stokes' Theorem to evaluate   , where C is the triangle with vertices   , and   , oriented counterclockwise as viewed from above. , oriented counterclockwise as viewed from above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
44
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis. where Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis. and S is the part of the hemisphere Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis. that lies inside the cylinder Use Stokes' Theorem to evaluate   where   and S is the part of the hemisphere   that lies inside the cylinder   , oriented in the direction of the positive x-axis. , oriented in the direction of the positive x-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
45
Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=xi+yj+xk\mathbf { F } = x \mathbf { i } + y \mathbf { j } + x \mathbf { k } and S is the part of the plane z=1xyz = 1 - x - y in the first octant with downward orientation.

A) 13\frac { 1 } { 3 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 11
E) 13- \frac { 1 } { 3 }
F) 12- \frac { 1 } { 2 }
G) 14- \frac { 1 } { 4 }
H) 1- 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
46
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yj+zk\mathbf { F } = ( x , y , z ) = y \mathbf { j } + z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

A) 1616
B) 88
C) 8- 8
D) 11
E) 3232
F) 44
G) 4- 4
H) 00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
47
Evaluate the surface integral S(x+y+z)dS\iint _ { S } ( x + y + z ) d S , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) .

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 32\frac { 3 } { 2 }
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 23\frac { \sqrt { 2 } } { 3 }
H) 322\frac { 3 \sqrt { 2 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
48
Verify that Stokes' Theorem is true for the vector field Verify that Stokes' Theorem is true for the vector field   and the cone   , oriented upward. and the cone Verify that Stokes' Theorem is true for the vector field   and the cone   , oriented upward. , oriented upward.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
49
Let F(x,y,z)=k\mathbf { F } ( x , y , z ) = \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 12\frac { 1 } { 2 }
H) 14\frac { 1 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
50
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F=(x,y,z)=xi+yj+zk\mathbf { F } = ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is the part of the surface z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y - plane and has upward orientation.

A) 3π- 3 \pi
B) 3π4- \frac { 3 \pi } { 4 }

C) 3π2- \frac { 3 \pi } { 2 }
D) 11
E) 3π3 \pi
F) 3π4\frac { 3 \pi } { 4 }
G) 3π2\frac { 3 \pi } { 2 }
H) 4π3\frac { 4 \pi } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
51
Let S be the parametric surface Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   . . Use Stokes' Theorem to evaluate Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   . , where Let S be the parametric surface   . Use Stokes' Theorem to evaluate   , where   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above. , where C is the curve of intersection of the paraboloid Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above. and the cylinder Use Stokes' Theorem to evaluate   , where C is the curve of intersection of the paraboloid   and the cylinder   , oriented counterclockwise as viewed from above. , oriented counterclockwise as viewed from above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
53
An upper hemisphere is given by z=16x2y2z = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } with the density function ρ(x,y,z)=z\rho ( x , y , z ) = z . Find the mass of the sphere.

A) 32π32 \pi
B) 8π8 \pi
C) 64π64 \pi
D) 11
E) 16π16 \pi
F) 4π4 \pi
G) 32π3\frac { 32 \pi } { 3 }
H) 64π3\frac { 64 \pi } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
54
Evaluate the surface integral Evaluate the surface integral   , where S is the triangle with vertices   , and  , where S is the triangle with vertices Evaluate the surface integral   , where S is the triangle with vertices   , and  , and Evaluate the surface integral   , where S is the triangle with vertices   , and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
55
Let F(x,y,z)=xk\mathbf { F } ( x , y , z ) = x \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D) 22
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 12\frac { 1 } { 2 }
H) 14\frac { 1 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
56
Evaluate the surface integral SzdS\iint _ { S } z d S , where S is that part of the cylinder z=1x2z = \sqrt { 1 - x ^ { 2 } } that lies above the square with vertices (1,1),(1,1),(1,1)( - 1 , - 1 ) , ( 1 , - 1 ) , ( - 1,1 ) , and (1,1)( 1,1 ) .

A) 2\sqrt { 2 }
B) 22
C) 8\sqrt { 8 }
D) 44
E) π\pi
F) 2π2 \pi
G) 4π4 \pi
H) 8π8 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   . where Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   . and C is the curve of intersection of the plane Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   . and the cylinder Use Stokes' Theorem to evaluate   where   and C is the curve of intersection of the plane   and the cylinder   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
58
Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yjzk\mathbf { F } = ( x , y , z ) = y \mathbf { j } - z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

A) 1616
B) 88
C) 8- 8
D) 11
E) 3232
F) 44
G) 4- 4
H) 00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
59
Evaluate the surface integral SxdS\iint _ { S } x d S , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) .

A) 11
B) 2\sqrt { 2 }
C) 3\sqrt { 3 }
D)2
E) 22\frac { \sqrt { 2 } } { 2 }
F) 32\frac { \sqrt { 3 } } { 2 }
G) 23\frac { \sqrt { 2 } } { 3 }
H) 33\frac { \sqrt { 3 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
60
Use Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  where Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  and C is the triangle with vertices Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and  , and Use Stokes' Theorem to evaluate   where   and C is the triangle with vertices   , and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
61
A fluid has density 1500 and velocity field A fluid has density 1500 and velocity field   . Find the rate of flow outward through the sphere   . . Find the rate of flow outward through the sphere A fluid has density 1500 and velocity field   . Find the rate of flow outward through the sphere   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
62
Evaluate Evaluate   , where   and S is the upper half of the sphere   , with upward orientation. , where Evaluate   , where   and S is the upper half of the sphere   , with upward orientation. and S is the upper half of the sphere Evaluate   , where   and S is the upper half of the sphere   , with upward orientation. , with upward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
63
Evaluate the surface integral Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation. for the vector field Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation. where S is part of the cone Evaluate the surface integral   for the vector field   where S is part of the cone   between the planes z = 1 and z = 2 with upward orientation. between the planes z = 1 and z = 2 with upward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
64
Evaluate the flux of the vector field Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  through the plane region with the given orientation as shown below. Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
65
Evaluate Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation. where Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation. and S is the part of the surface Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation. that lies above the rectangle Evaluate   where   and S is the part of the surface   that lies above the rectangle   and has upward orientation. and has upward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
66
Evaluate the surface integral Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   . , where S is the part of the sphere Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   . that lies above the cone Evaluate the surface integral   , where S is the part of the sphere   that lies above the cone   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
67
Evaluate the surface integral Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   . , where S is the part of the paraboloid Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   . that lies in front of the plane Evaluate the surface integral   , where S is the part of the paraboloid   that lies in front of the plane   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
68
Compute the surface integral Compute the surface integral   if   and S is the piece of the sphere   in the second octant   . if Compute the surface integral   if   and S is the piece of the sphere   in the second octant   . and S is the piece of the sphere Compute the surface integral   if   and S is the piece of the sphere   in the second octant   . in the second octant Compute the surface integral   if   and S is the piece of the sphere   in the second octant   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
69
Consider the top half of the ellipsoid Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward. parametrized by Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward. . Find a normal vector N at the point determined by Consider the top half of the ellipsoid   parametrized by   . Find a normal vector N at the point determined by   , and determine if it is upward and/or outward. , and determine if it is upward and/or outward.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
70
Evaluate the flux of the vector field Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.  through the plane region with the given orientation as shown below. Evaluate the flux of the vector field   through the plane region with the given orientation as shown below.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
71
Evaluate the surface integral Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation. for the vector field Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation. , where S is the hemisphere Evaluate the surface integral   for the vector field   , where S is the hemisphere   with upward orientation. with upward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the flux of the vector field Find the flux of the vector field   across the paraboloid given by   with   and upward orientation: across the paraboloid given by Find the flux of the vector field   across the paraboloid given by   with   and upward orientation: with Find the flux of the vector field   across the paraboloid given by   with   and upward orientation: and upward orientation:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find the z-coordinate of the centroid of the upper hemisphere with uniform density whose equation is given by Find the z-coordinate of the centroid of the upper hemisphere with uniform density whose equation is given by   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find the mass of the sphere Find the mass of the sphere   whose density at each point is proportional to its distance to the   plane. whose density at each point is proportional to its distance to the Find the mass of the sphere   whose density at each point is proportional to its distance to the   plane. plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
75
Evaluate Evaluate   , where S is the part of the surface   that lies between the cylinders   and   . , where S is the part of the surface Evaluate   , where S is the part of the surface   that lies between the cylinders   and   . that lies between the cylinders Evaluate   , where S is the part of the surface   that lies between the cylinders   and   . and Evaluate   , where S is the part of the surface   that lies between the cylinders   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
76
Evaluate Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation. , where Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation. and S is the part of the surface Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation. below the plane Evaluate   , where   and S is the part of the surface   below the plane   , with upward orientation. , with upward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
77
Evaluate the surface integral Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation. for the vector field Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation. where S is the part of the elliptic paraboloid Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation. that lies below the square Evaluate the surface integral   for the vector field   where S is the part of the elliptic paraboloid   that lies below the square   and has downward orientation. and has downward orientation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
78
Let F(x,y,z)=zi+xj+yk\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } . Find the curl of F.

A) i
B) j
C) k\mathbf { k }
D) i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k }
E) i- \mathbf { i }
F) j- j
G) k- \mathbf { k }
H) ijk- \mathbf { i } - \mathbf { j } - \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
79
Find the mass of a thin funnel in the shape of a cone Find the mass of a thin funnel in the shape of a cone   , is its density function is   . , is its density
function is Find the mass of a thin funnel in the shape of a cone   , is its density function is   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
80
Let F(x,y,z)=yixj\mathbf { F } ( x , y , z ) = y \mathbf { i } - x \mathbf { j } . Find the curl of F.

A) 2i2i
B) 2j2 \mathrm { j }
C) 2k2 \mathbf { k }
D) 2i+2j+2k2 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
E) 2i- 2 \mathbf { i }
F) 2j- 2 j
G) 2k- 2 \mathbf { k }
H) 2i2j2k- 2 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 240 في هذه المجموعة.