Deck 10: Basic Regression Analysis With Time Series Data

ملء الشاشة (f)
exit full mode
سؤال
The sample size for a time series data set is the number of:

A)variables being measured.
B)time periods over which we observe the variables of interest less the number of variables being measured.
C) time periods over which we observe the variables of interest plus the number of variables being measured.
D) time periods over which we observe the variables of interest.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
If an explanatory variable is strictly exogenous it implies that:

A)changes in the lag of the variable does not affect future values of the dependent variable.
B)the variable is correlated with the error term in all future time periods.
C) the variable cannot react to what has happened to the dependent variable in the past.
D) the conditional mean of the error term given the variable is zero.
سؤال
Economic time series are outcomes of random variables.
سؤال
Which of the following statements is true?

A)The average of an exponential time series is a linear function of time.
B)The average of a linear sequence is an exponential function of time.
C) When a series has the same average growth rate from period to period, it can be approximated with an exponential trend.
D) When a series has the same average growth rate from period to period, it can be approximated with a linear trend.
سؤال
With base year 1990, the index of industrial production for the year 1999 is 112. What will be the value of the index in 1999, if the base year is changed to 1982 and the index measured 96 in 1982?

A)112.24
B)116.66
C) 85.71
D) 92.09
سؤال
A static model is postulated when:

A)a change in the independent variable at time 't' is believed to have an effect on the dependent variable at period 't + 1'.
B)a change in the independent variable at time 't' is believed to have an effect on the dependent variable for all successive time periods.
C) a change in the independent variable at time 't' does not have any effect on the dependent variable.
D) a change in the independent variable at time 't' is believed to have an immediate effect on the dependent variable.
سؤال
Refer to the following model yt = <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. <div style=padding-top: 35px> 0 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. <div style=padding-top: 35px> 0st + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. <div style=padding-top: 35px> 1st-1 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. <div style=padding-top: 35px> 2st-2 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. <div style=padding-top: 35px> 3st-3 + ut
This is an example of a(n):

A)infinite distributed lag model.
B)finite distributed lag model of order 1.
C) finite distributed lag model of order 2.
D) finite distributed lag model of order 3.
سؤال
A study which observes whether a particular occurrence influences some outcome is referred to as a(n):

A)event study.
B)exponential study.
C) laboratory study.
D) comparative study.
سؤال
​Which of the following rules out perfect collinearity among the regressors?

A)​​Multiple regression
B)​Simple regression
C) ​Time series regression
D) ​Cross-sectional regression
سؤال
Which of the following is an assumption on which time series regression is based?

A)A time series process follows a model that is nonlinear in parameters.
B)In a time series process, no independent variable is a perfect linear combination of the others.
C) In a time series process, at least one independent variable is a constant.
D) For each time period, the expected value of the error ut, given the explanatory variables for all time periods, is positive.
سؤال
In a static model, one or more explanatory variables affect the dependent variable with a lag.
سؤال
Which of the following correctly identifies a difference between cross-sectional data and time series data?

A)Cross-sectional data is based on temporal ordering, whereas time series data is not.
B)Time series data is based on temporal ordering, whereas cross-sectional data is not.
C) Cross-sectional data consists of only qualitative variables, whereas time series data consists of only quantitative variables.
D) Time series data consists of only qualitative variables, whereas cross-sectional data does not include qualitative variables.
سؤال
Adding a time trend can make an explanatory variable more significant if:

A)the dependent and independent variables have similar kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable away from its trend line.
B)the dependent and independent variables have similar kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line.
C) the dependent and independent variables have different kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line.
D) the dependent and independent variables have different kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable away from its trend line.
سؤال
A seasonally adjusted series is one which:

A)has had seasonal factors added to it.
B)has seasonal factors removed from it.
C) has qualitative dependent variables representing different seasons.
D) has qualitative explanatory variables representing different seasons.
سؤال
The model: Yt = <strong>The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n):</strong> A)autoregressive conditional heteroskedasticity model. B)static model. C) finite distributed lag model. D) infinite distributed lag model. <div style=padding-top: 35px> 0 + <strong>The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n):</strong> A)autoregressive conditional heteroskedasticity model. B)static model. C) finite distributed lag model. D) infinite distributed lag model. <div style=padding-top: 35px> 1ct + ut, t = 1,2,……., n is an example of a(n):

A)autoregressive conditional heteroskedasticity model.
B)static model.
C) finite distributed lag model.
D) infinite distributed lag model.
سؤال
A stochastic process refers to a:

A)sequence of random variables indexed by time.
B)sequence of variables that can take fixed qualitative values.
C) sequence of random variables that can take binary values only.
D) sequence of random variables estimated at the same point of time.
سؤال
If <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. <div style=padding-top: 35px> 1 > 0, then yt in the linear function of time E(yt) = <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. <div style=padding-top: 35px> 0 + <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. <div style=padding-top: 35px> 1t displays a(n):​

A)​upward trend.
B)​downward trend.
C) exponential trend.
D) quadratic trend.
سؤال
The propensity δ0 + δ1+ … + δk is sometimes called the:​

A)​short-run elasticity, which measures the percentage increase in a dependent variable after k quarters given a permanent 1% increase in the k independent variables.
B)​long-run elasticity, which measures the percentage increase in a dependent variable after k quarters given a permanent 1% increase in the k independent variables.
C) ​short-run elasticity, which measures the percentage decrease in a dependent variable after k quarters given a permanent 1% decrease in the k independent variables.
D) ​​long-run elasticity, which measures the percentage decrease in a dependent variable after k quarters given a permanent 1% decrease in the k independent variables.
سؤال
Time series regression is based on series which exhibit serial correlation.
سؤال
Refer to the following model. yt = <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 0 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 0st + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 1st-1 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 2st-2 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 3st-3 + ut <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 0 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 1 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 2 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. <div style=padding-top: 35px> 3 represents:

A)the short-run change in y given a temporary increase in s.
B)the short-run change in y given a permanent increase in s.
C) the long-run change in y given a permanent increase in s.
D) the long-run change in y given a temporary increase in s.
سؤال
​When a series has the same average growth rate from period to period, then it can be approximated by an exponential trend.
سؤال
Price indexes are necessary for turning a time series measured in real value into nominal value.
سؤال
Dummy variables can be used to address the problem of seasonality in regression models.
سؤال
The short-run elasticity measures the immediate percentage change in a dependent variable given a 1% increase in the independent variables.​
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/24
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 10: Basic Regression Analysis With Time Series Data
1
The sample size for a time series data set is the number of:

A)variables being measured.
B)time periods over which we observe the variables of interest less the number of variables being measured.
C) time periods over which we observe the variables of interest plus the number of variables being measured.
D) time periods over which we observe the variables of interest.
D
Explanation: The sample size for a time series data set is the number of time periods over which we observe the variables of interest.
2
If an explanatory variable is strictly exogenous it implies that:

A)changes in the lag of the variable does not affect future values of the dependent variable.
B)the variable is correlated with the error term in all future time periods.
C) the variable cannot react to what has happened to the dependent variable in the past.
D) the conditional mean of the error term given the variable is zero.
C
Explanation: If an explanatory variable is strictly exogenous it implies that the variable cannot react to what has happened to the dependent variable in the past.
3
Economic time series are outcomes of random variables.
True
Explanation: Economic time series are outcomes of random variables.
4
Which of the following statements is true?

A)The average of an exponential time series is a linear function of time.
B)The average of a linear sequence is an exponential function of time.
C) When a series has the same average growth rate from period to period, it can be approximated with an exponential trend.
D) When a series has the same average growth rate from period to period, it can be approximated with a linear trend.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
5
With base year 1990, the index of industrial production for the year 1999 is 112. What will be the value of the index in 1999, if the base year is changed to 1982 and the index measured 96 in 1982?

A)112.24
B)116.66
C) 85.71
D) 92.09
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
6
A static model is postulated when:

A)a change in the independent variable at time 't' is believed to have an effect on the dependent variable at period 't + 1'.
B)a change in the independent variable at time 't' is believed to have an effect on the dependent variable for all successive time periods.
C) a change in the independent variable at time 't' does not have any effect on the dependent variable.
D) a change in the independent variable at time 't' is believed to have an immediate effect on the dependent variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
7
Refer to the following model yt = <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. 0 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. 0st + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. 1st-1 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. 2st-2 + <strong>Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n):</strong> A)infinite distributed lag model. B)finite distributed lag model of order 1. C) finite distributed lag model of order 2. D) finite distributed lag model of order 3. 3st-3 + ut
This is an example of a(n):

A)infinite distributed lag model.
B)finite distributed lag model of order 1.
C) finite distributed lag model of order 2.
D) finite distributed lag model of order 3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
8
A study which observes whether a particular occurrence influences some outcome is referred to as a(n):

A)event study.
B)exponential study.
C) laboratory study.
D) comparative study.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
9
​Which of the following rules out perfect collinearity among the regressors?

A)​​Multiple regression
B)​Simple regression
C) ​Time series regression
D) ​Cross-sectional regression
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
10
Which of the following is an assumption on which time series regression is based?

A)A time series process follows a model that is nonlinear in parameters.
B)In a time series process, no independent variable is a perfect linear combination of the others.
C) In a time series process, at least one independent variable is a constant.
D) For each time period, the expected value of the error ut, given the explanatory variables for all time periods, is positive.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
11
In a static model, one or more explanatory variables affect the dependent variable with a lag.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
12
Which of the following correctly identifies a difference between cross-sectional data and time series data?

A)Cross-sectional data is based on temporal ordering, whereas time series data is not.
B)Time series data is based on temporal ordering, whereas cross-sectional data is not.
C) Cross-sectional data consists of only qualitative variables, whereas time series data consists of only quantitative variables.
D) Time series data consists of only qualitative variables, whereas cross-sectional data does not include qualitative variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
13
Adding a time trend can make an explanatory variable more significant if:

A)the dependent and independent variables have similar kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable away from its trend line.
B)the dependent and independent variables have similar kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line.
C) the dependent and independent variables have different kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line.
D) the dependent and independent variables have different kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable away from its trend line.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
14
A seasonally adjusted series is one which:

A)has had seasonal factors added to it.
B)has seasonal factors removed from it.
C) has qualitative dependent variables representing different seasons.
D) has qualitative explanatory variables representing different seasons.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
15
The model: Yt = <strong>The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n):</strong> A)autoregressive conditional heteroskedasticity model. B)static model. C) finite distributed lag model. D) infinite distributed lag model. 0 + <strong>The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n):</strong> A)autoregressive conditional heteroskedasticity model. B)static model. C) finite distributed lag model. D) infinite distributed lag model. 1ct + ut, t = 1,2,……., n is an example of a(n):

A)autoregressive conditional heteroskedasticity model.
B)static model.
C) finite distributed lag model.
D) infinite distributed lag model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
16
A stochastic process refers to a:

A)sequence of random variables indexed by time.
B)sequence of variables that can take fixed qualitative values.
C) sequence of random variables that can take binary values only.
D) sequence of random variables estimated at the same point of time.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
17
If <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. 1 > 0, then yt in the linear function of time E(yt) = <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. 0 + <strong>If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​</strong> A)​upward trend. B)​downward trend. C) exponential trend. D) quadratic trend. 1t displays a(n):​

A)​upward trend.
B)​downward trend.
C) exponential trend.
D) quadratic trend.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
18
The propensity δ0 + δ1+ … + δk is sometimes called the:​

A)​short-run elasticity, which measures the percentage increase in a dependent variable after k quarters given a permanent 1% increase in the k independent variables.
B)​long-run elasticity, which measures the percentage increase in a dependent variable after k quarters given a permanent 1% increase in the k independent variables.
C) ​short-run elasticity, which measures the percentage decrease in a dependent variable after k quarters given a permanent 1% decrease in the k independent variables.
D) ​​long-run elasticity, which measures the percentage decrease in a dependent variable after k quarters given a permanent 1% decrease in the k independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
19
Time series regression is based on series which exhibit serial correlation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
20
Refer to the following model. yt = <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 0 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 0st + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 1st-1 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 2st-2 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 3st-3 + ut <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 0 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 1 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 2 + <strong>Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents:</strong> A)the short-run change in y given a temporary increase in s. B)the short-run change in y given a permanent increase in s. C) the long-run change in y given a permanent increase in s. D) the long-run change in y given a temporary increase in s. 3 represents:

A)the short-run change in y given a temporary increase in s.
B)the short-run change in y given a permanent increase in s.
C) the long-run change in y given a permanent increase in s.
D) the long-run change in y given a temporary increase in s.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
21
​When a series has the same average growth rate from period to period, then it can be approximated by an exponential trend.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
22
Price indexes are necessary for turning a time series measured in real value into nominal value.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
23
Dummy variables can be used to address the problem of seasonality in regression models.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
24
The short-run elasticity measures the immediate percentage change in a dependent variable given a 1% increase in the independent variables.​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 24 في هذه المجموعة.