Deck 18: The Theory of Multiple Regression
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
سؤال
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/50
العب
ملء الشاشة (f)
Deck 18: The Theory of Multiple Regression
1
A joint hypothesis that is linear in the coefficients and imposes a number of restrictions can be written as
A)(
X)-1
Y.
B)Rβ = r.
C)
- β.
D)Rβ= 0.
A)(


B)Rβ = r.
C)

D)Rβ= 0.
B
2
Minimization of
results in
A)
Y = X
.
B)X
= 0k+1.
C)
(Y - X
)= 0k+1.
D)Rβ = r.

A)


B)X

C)


D)Rβ = r.
C
3
The Gauss-Markov theorem for multiple regression states that the OLS estimator
A)has the smallest variance possible for any linear estimator.
B)is BLUE if the Gauss-Markov conditions for multiple regression hold.
C)is identical to the maximum likelihood estimator.
D)is the most commonly used estimator.
A)has the smallest variance possible for any linear estimator.
B)is BLUE if the Gauss-Markov conditions for multiple regression hold.
C)is identical to the maximum likelihood estimator.
D)is the most commonly used estimator.
B
4

A)cannot be calculated since the population parameter is unknown.
B)= (


C)= Y -

D)= β + (


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
5
The formulation Rβ= r to test a hypotheses
A)allows for restrictions involving both multiple regression coefficients and single regression coefficients.
B)is F-distributed in large samples.
C)allows only for restrictions involving multiple regression coefficients.
D)allows for testing linear as well as nonlinear hypotheses.
A)allows for restrictions involving both multiple regression coefficients and single regression coefficients.
B)is F-distributed in large samples.
C)allows only for restrictions involving multiple regression coefficients.
D)allows for testing linear as well as nonlinear hypotheses.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
6
The GLS assumptions include all of the following,with the exception of
A)the Xi are fixed in repeated samples.
B)Xi and ui have nonzero finite fourth moments.
C)E(U
)= Ω(X),where Ω(X)is n × n matrix-valued that can depend on X.
D)E(U
)= 0n.
A)the Xi are fixed in repeated samples.
B)Xi and ui have nonzero finite fourth moments.
C)E(U


D)E(U

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
7
The difference between the central limit theorems for a scalar and vector-valued random variables is
A)that n approaches infinity in the central limit theorem for scalars only.
B)the conditions on the variances.
C)that single random variables can have an expected value but vectors cannot.
D)the homoskedasticity assumption in the former but not the latter.
A)that n approaches infinity in the central limit theorem for scalars only.
B)the conditions on the variances.
C)that single random variables can have an expected value but vectors cannot.
D)the homoskedasticity assumption in the former but not the latter.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
8
The heteroskedasticity-robust estimator of
is obtained
A)from (
X)-1
U.
B)by replacing the population moments in its definition by the identity matrix.
C)from feasible GLS estimation.
D)by replacing the population moments in its definition by sample moments.

A)from (


B)by replacing the population moments in its definition by the identity matrix.
C)from feasible GLS estimation.
D)by replacing the population moments in its definition by sample moments.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
9
The GLS estimator is defined as
A)(
Ω-1X)-1 (
Ω-1Y).
B)(
X)-1
Y.
C)
Y.
D)(
X)-1
U.
A)(


B)(


C)

D)(


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
10
One implication of the extended least squares assumptions in the multiple regression model is that
A)feasible GLS should be used for estimation.
B)E(U|X)= In.
C)
X is singular.
D)the conditional distribution of U given X is N(0n,In).
A)feasible GLS should be used for estimation.
B)E(U|X)= In.
C)

D)the conditional distribution of U given X is N(0n,In).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
11
The assumption that X has full column rank implies that
A)the number of observations equals the number of regressors.
B)binary variables are absent from the list of regressors.
C)there is no perfect multicollinearity.
D)none of the regressors appear in natural logarithm form.
A)the number of observations equals the number of regressors.
B)binary variables are absent from the list of regressors.
C)there is no perfect multicollinearity.
D)none of the regressors appear in natural logarithm form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
12
The OLS estimator
A)has the multivariate normal asymptotic distribution in large samples.
B)is t-distributed.
C)has the multivariate normal distribution regardless of the sample size.
D)is F-distributed.
A)has the multivariate normal asymptotic distribution in large samples.
B)is t-distributed.
C)has the multivariate normal distribution regardless of the sample size.
D)is F-distributed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
13
The linear multiple regression model can be represented in matrix notation as Y= Xβ + U,where X is of order n×(k+1).k represents the number of
A)regressors.
B)observations.
C)regressors excluding the "constant" regressor for the intercept.
D)unknown regression coefficients.
A)regressors.
B)observations.
C)regressors excluding the "constant" regressor for the intercept.
D)unknown regression coefficients.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
14
Let PX = X(
X)-1
and MX = In - PX.Then MX MX =
A)X(
X)-1
- PX.
B)
C)In.
D)MX.


A)X(


B)

C)In.
D)MX.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
15
Let there be q joint hypothesis to be tested.Then the dimension of r in the expression Rβ = r is
A)q × 1.
B)q × (k+1).
C)(k+1)× 1.
D)q.
A)q × 1.
B)q × (k+1).
C)(k+1)× 1.
D)q.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
16
One of the properties of the OLS estimator is
A)X
= 0k+1.
B)that the coefficient vector
has full rank.
C)
(Y - X
)= 0k+1.
D)(
X)-1=
Y
A)X

B)that the coefficient vector

C)


D)(


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
17
The multiple regression model can be written in matrix form as follows:
A)Y = Xβ.
B)Y = X + U.
C)Y = βX + U.
D)Y = Xβ + U.
A)Y = Xβ.
B)Y = X + U.
C)Y = βX + U.
D)Y = Xβ + U.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
18
The multiple regression model in matrix form Y = Xβ + U can also be written as
A)Yi = β0 + X
β + ui,i = 1,…,n.
B)Yi = X
βi,i = 1,…,n.
C)Yi = βX
+ ui,i = 1,…,n.
D)Yi = X
β + ui,i = 1,…,n.
A)Yi = β0 + X

B)Yi = X

C)Yi = βX

D)Yi = X

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
19
The extended least squares assumptions in the multiple regression model include four assumptions from Chapter 6 (ui has conditional mean zero; (Xi,Yi),i = 1,…,n are i.i.d.draws from their joint distribution;Xi and ui have nonzero finite fourth moments;there is no perfect multicollinearity).In addition,there are two further assumptions,one of which is
A)heteroskedasticity of the error term.
B)serial correlation of the error term.
C)homoskedasticity of the error term.
D)invertibility of the matrix of regressors.
A)heteroskedasticity of the error term.
B)serial correlation of the error term.
C)homoskedasticity of the error term.
D)invertibility of the matrix of regressors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
20
The Gauss-Markov theorem for multiple regression proves that
A)MX is an idempotent matrix.
B)the OLS estimator is BLUE.
C)the OLS residuals and predicted values are orthogonal.
D)the variance-covariance matrix of the OLS estimator is
(
X)-1.
A)MX is an idempotent matrix.
B)the OLS estimator is BLUE.
C)the OLS residuals and predicted values are orthogonal.
D)the variance-covariance matrix of the OLS estimator is


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
21
Write the following three linear equations in matrix format Ax = b,where x is a 3×1 vector containing q,p,and y,A is a 3×3 matrix of coefficients,and b is a 3×1 vector of constants.
q = 5 +3 p - 2 y
q = 10 - p + 10 y
p = 6 y
q = 5 +3 p - 2 y
q = 10 - p + 10 y
p = 6 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
22
The TSLS estimator is
A)(X'X)-1 X'Y
B)(X'Z(Z'Z)-1 Z'X)-1 X'Z(Z'Z)-1 Z' Y
C)(XΩ-1X)-1(XΩ-1Y)
D)(X'Pz)-1PzY
A)(X'X)-1 X'Y
B)(X'Z(Z'Z)-1 Z'X)-1 X'Z(Z'Z)-1 Z' Y
C)(XΩ-1X)-1(XΩ-1Y)
D)(X'Pz)-1PzY
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
23
The GLS estimator
A)is always the more efficient estimator when compared to OLS.
B)is the OLS estimator of the coefficients in a transformed model,where the errors of the transformed model satisfy the Gauss-Markov conditions.
C)cannot handle binary variables,since some of the transformations require division by one of the regressors.
D)produces identical estimates for the coefficients,but different standard errors.
A)is always the more efficient estimator when compared to OLS.
B)is the OLS estimator of the coefficients in a transformed model,where the errors of the transformed model satisfy the Gauss-Markov conditions.
C)cannot handle binary variables,since some of the transformations require division by one of the regressors.
D)produces identical estimates for the coefficients,but different standard errors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
24
Write an essay on the difference between the OLS estimator and the GLS estimator.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
25
In Chapter 10 of your textbook,panel data estimation was introduced.Panel data consist of observations on the same n entities at two or more time periods T.For two variables,you have
(Xit,Yit),i = 1,... ,n and t = 1,... ,T
where n could be the U.S.states.The example in Chapter 10 used annual data from 1982 to 1988 for the fatality rate and beer taxes.Estimation by OLS,in essence,involved "stacking" the data.
(a)What would the variance-covariance matrix of the errors look like in this case if you allowed for homoskedasticity-only standard errors? What is its order? Use an example of a linear regression with one regressor of 4 U.S.states and 3 time periods.
(b)Does it make sense that errors in New Hampshire,say,are uncorrelated with errors in Massachusetts during the same time period ("contemporaneously")? Give examples why this correlation might not be zero.
(c)If this correlation was known,could you find an estimator which was more efficient than OLS?
(Xit,Yit),i = 1,... ,n and t = 1,... ,T
where n could be the U.S.states.The example in Chapter 10 used annual data from 1982 to 1988 for the fatality rate and beer taxes.Estimation by OLS,in essence,involved "stacking" the data.
(a)What would the variance-covariance matrix of the errors look like in this case if you allowed for homoskedasticity-only standard errors? What is its order? Use an example of a linear regression with one regressor of 4 U.S.states and 3 time periods.
(b)Does it make sense that errors in New Hampshire,say,are uncorrelated with errors in Massachusetts during the same time period ("contemporaneously")? Give examples why this correlation might not be zero.
(c)If this correlation was known,could you find an estimator which was more efficient than OLS?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
26
Assume that the data looks as follows:
Y =
,U =
,X =
,and β = (β1)
Using the formula for the OLS estimator
= (
X)-1
Y,derive the formula for
1,the only slope in this "regression through the origin."
Y =



Using the formula for the OLS estimator




فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
27
A =
,B =
,and C =
show that
=
+
and
=
.









فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
28
Your textbook derives the OLS estimator as
=
X)-1
Y.
Show that the estimator does not exist if there are fewer observations than the number of explanatory variables,including the constant.What is the rank of
X in this case?



Show that the estimator does not exist if there are fewer observations than the number of explanatory variables,including the constant.What is the rank of

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
29
In the case when the errors are homoskedastic and normally distributed,conditional on X,then
A)
is distributed N(β,
),where
=
I(k+1).
B)
is distributed N(β,
),where
=
/n =


/n.
C)
is distributed N(β,
),where
=
(
X)-1.
D)
= PXY where PX = X(
X)-1
.
A)




B)







C)





D)



فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
30
Let Y =
and X =
Find
X,
Y, (
X)-1 and finally (
X)-1
Y.







فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
31
To prove that the OLS estimator is BLUE requires the following assumption
A)(Xi,Yi)i = 1,…,n are i.i.d.draws from their joint distribution
B)Xi and ui have nonzero finite fourth moments
C)the conditional distribution of ui given Xi is normal
D)none of the above
A)(Xi,Yi)i = 1,…,n are i.i.d.draws from their joint distribution
B)Xi and ui have nonzero finite fourth moments
C)the conditional distribution of ui given Xi is normal
D)none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
32
The presence of correlated error terms creates problems for inference based on OLS.These can be overcome by
A)using HAC standard errors.
B)using heteroskedasticity-robust standard errors.
C)reordering the observations until the correlation disappears.
D)using homoskedasticity-only standard errors.
A)using HAC standard errors.
B)using heteroskedasticity-robust standard errors.
C)reordering the observations until the correlation disappears.
D)using homoskedasticity-only standard errors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
33
An estimator of β is said to be linear if
A)it can be estimated by least squares.
B)it is a linear function of Y1,…,Yn .
C)there are homoskedasticity-only errors.
D)it is a linear function of X1,…,Xn .
A)it can be estimated by least squares.
B)it is a linear function of Y1,…,Yn .
C)there are homoskedasticity-only errors.
D)it is a linear function of X1,…,Xn .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
34
The leading example of sampling schemes in econometrics that do not result in independent observations is
A)cross-sectional data.
B)experimental data.
C)the Current Population Survey.
D)when the data are sampled over time for the same entity.
A)cross-sectional data.
B)experimental data.
C)the Current Population Survey.
D)when the data are sampled over time for the same entity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
35
The extended least squares assumptions in the multiple regression model include four assumptions from Chapter 6 (ui has conditional mean zero; (Xi,Yi),i = 1,…,n are i.i.d.draws from their joint distribution;Xi and ui have nonzero finite fourth moments;there is no perfect multicollinearity).In addition,there are two further assumptions,one of which is
A)heteroskedasticity of the error term.
B)serial correlation of the error term.
C)the conditional distribution of ui given Xi is normal.
D)invertibility of the matrix of regressors.
A)heteroskedasticity of the error term.
B)serial correlation of the error term.
C)the conditional distribution of ui given Xi is normal.
D)invertibility of the matrix of regressors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
36
Define the GLS estimator and discuss its properties when Ω is known.Why is this estimator sometimes called infeasible GLS? What happens when Ω is unknown? What would the Ω matrix look like for the case of independent sampling with heteroskedastic errors,where var(ui
Xi)= ch(Xi)= σ2
? Since the inverse of the error variance-covariance matrix is needed to compute the GLS estimator,find Ω-1.The textbook shows that the original model Y = Xβ + U will be transformed into
= FU,and
F = Ω-1.Find F in the above case,and describe what effect the transformation has on the original data.




فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
37
Give several economic examples of how to test various joint linear hypotheses using matrix notation.Include specifications of Rβ = r where you test for (i)all coefficients other than the constant being zero, (ii)a subset of coefficients being zero,and (iii)equality of coefficients.Talk about the possible distributions involved in finding critical values for your hypotheses.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
38
The homoskedasticity-only F-statistic is
A)
B)
C)
D)
A)

B)

C)

D)

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
39
The OLS estimator for the multiple regression model in matrix form is
A)(X'X)-1X'Y
B)X(X'X)-1X' - PX
C)(X'X)-1X'U
D)(XΩ-1X)-1XΩ-1Y
A)(X'X)-1X'Y
B)X(X'X)-1X' - PX
C)(X'X)-1X'U
D)(XΩ-1X)-1XΩ-1Y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider the multiple regression model from Chapter 5,where k = 2 and the assumptions of the multiple regression model hold.
(a)Show what the X matrix and the β vector would look like in this case.
(b)Having collected data for 104 countries of the world from the Penn World Tables,you want to estimate the effect of the population growth rate (X1i)and the saving rate (X2i)(average investment share of GDP from 1980 to 1990)on GDP per worker (relative to the U.S. )in 1990.What are your expected signs for the regression coefficient? What is the order of the (X'X)here?
(c)You are asked to find the OLS estimator for the intercept and slope in this model using the
formula
= (X'X)-1 X'Y.Since you are more comfortable in inverting a 2×2 matrix (the inverse of a 2×2 matrix is,
=
)
you decide to write the multiple regression model in deviations from mean form.Show what the X matrix,the (X'X)matrix,and the X'Y matrix would look like now.
(Hint: use small letters to indicate deviations from mean,i.e. ,zi = Zi -
and note that
Yi =
0 +
1X1i +
2X2i +
i
=
0 +
1
1 +
2
2.
Subtracting the second equation from the first,you get
yi =
1x1i +
2x2i +
i)
(d)Show that the slope for the population growth rate is given by
1 =
(e)The various sums needed to calculate the OLS estimates are given below:
= 8.3103;
= .0122;
= 0.6422
= -0.2304;
= 1.5676;
= -0.0520
Find the numerical values for the effect of population growth and the saving rate on per capita income and interpret these.
(f)Indicate how you would find the intercept in the above case.Is this coefficient of interest in the interpretation of the determinants of per capita income? If not,then why estimate it?
(a)Show what the X matrix and the β vector would look like in this case.
(b)Having collected data for 104 countries of the world from the Penn World Tables,you want to estimate the effect of the population growth rate (X1i)and the saving rate (X2i)(average investment share of GDP from 1980 to 1990)on GDP per worker (relative to the U.S. )in 1990.What are your expected signs for the regression coefficient? What is the order of the (X'X)here?
(c)You are asked to find the OLS estimator for the intercept and slope in this model using the
formula




you decide to write the multiple regression model in deviations from mean form.Show what the X matrix,the (X'X)matrix,and the X'Y matrix would look like now.
(Hint: use small letters to indicate deviations from mean,i.e. ,zi = Zi -

Yi =










Subtracting the second equation from the first,you get
yi =



(d)Show that the slope for the population growth rate is given by








Find the numerical values for the effect of population growth and the saving rate on per capita income and interpret these.
(f)Indicate how you would find the intercept in the above case.Is this coefficient of interest in the interpretation of the determinants of per capita income? If not,then why estimate it?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
41
Prove that under the extended least squares assumptions the OLS estimator
is unbiased and that its variance-covariance matrix is
(X'X)-1.


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
42
In order for a matrix A to have an inverse,its determinant cannot be zero.Derive the determinant of the following matrices:
A =
B =
X'X where X = (1 10)
A =


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
43
Your textbook shows that the following matrix (Mx = In - Px)is a symmetric idempotent matrix.Consider a different Matrix A,which is defined as follows: A = I -
ιι' and ι =
a.Show what the elements of A look like.
b.Show that A is a symmetric idempotent matrix
c.Show that Aι = 0.
d.Show that A
=
,where
is the vector of OLS residuals from a multiple regression.


b.Show that A is a symmetric idempotent matrix
c.Show that Aι = 0.
d.Show that A



فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
44
Consider the following population regression function: Y = Xβ + U
where Y=
,X=
,β =
,U=
Given the following information on population growth rates (Y)and education (X)for 86 countries
,
,
,
,
a)find X'X,X'Y, (X'X)-1 and finally (X'X)-1 X'Y.
b)Interpret the slope,and if necessary,the intercept.
where Y=









b)Interpret the slope,and if necessary,the intercept.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
45
For the OLS estimator
= (
X)-1
Y to exist,X'X must be invertible.This is the case when X has full rank.What is the rank of a matrix? What is the rank of the product of two matrices? Is it possible that X could have rank n? What would be the rank of X'X in the case n<(k+1)? Explain intuitively why the OLS estimator does not exist in that situation.



فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
46
Using the model Y = Xβ + U,and the extended least squares assumptions,derive the OLS estimator
.Discuss the conditions under which
X is invertible.


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
47
You have obtained data on test scores and student-teacher ratios in region A and region B of your state.Region B,on average,has lower student-teacher ratios than region A.You decide to run the following regression.
Yi = β0+ β1X1i + β2X2i + β3X3i+ui
where X1 is the class size in region A,X2 is the difference between the class size between region A and B,and X3 is the class size in region B.Your regression package shows a message indicating that it cannot estimate the above equation.What is the problem here and how can it be fixed? Explain the problem in terms of the rank of the X matrix.
Yi = β0+ β1X1i + β2X2i + β3X3i+ui
where X1 is the class size in region A,X2 is the difference between the class size between region A and B,and X3 is the class size in region B.Your regression package shows a message indicating that it cannot estimate the above equation.What is the problem here and how can it be fixed? Explain the problem in terms of the rank of the X matrix.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
48
Write the following four restrictions in the form Rβ = r,where the hypotheses are to be tested simultaneously.
β3 = 2β5,
β1 + β2 = 1,
β4 = 0,
β2 = -β6.
Can you write the following restriction β2 = -
in the same format? Why not?
β3 = 2β5,
β1 + β2 = 1,
β4 = 0,
β2 = -β6.
Can you write the following restriction β2 = -

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
49
Consider the following symmetric and idempotent Matrix A: A = I -
ιι' and ι =
a.Show that by postmultiplying this matrix by the vector Y (the LHS variable of the OLS regression),you convert all observations of Y in deviations from the mean.
b.Derive the expression Y'AY.What is the order of this expression? Under what other name have you encountered this expression before?


b.Derive the expression Y'AY.What is the order of this expression? Under what other name have you encountered this expression before?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
50
Write down,in general,the variance-covariance matrix for the multiple regression error term U.Using the assumptions cov(ui,uj|XiXj)= 0 and var(ui|Xi)=
.Show that the variance-covariance matrix can be written as
In.


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck