Deck 17: the Simplex Solution Method

ملء الشاشة (f)
exit full mode
سؤال
In using the simplex method, the number of basic variables is equal to the number of constraints.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Row operations are used to solve simultaneous equations where equations are multiplied by constants and added or subtracted from each other.
سؤال
A basic feasible solution satisfies the model constraints and has the same number of variables with negative values as there are constraints.
سؤال
The simplex method can be used to solve quadratic programming problems.
سؤال
A basic feasible solution satisfies the model constraints and has the same number of variables with non-negative values as there are constraints.
سؤال
The simplex method is a general mathematical solution technique for solving linear programming problems.
سؤال
The first step in solving a linear programming model manually with the simplex method is to convert the model into standard form.
سؤال
The simplex method cannot be used to solve quadratic programming problems.
سؤال
The simplex method moves from one better solution to another until the best one is found, and then it stops.
سؤال
The basic feasible solution in the initial simplex tableau is the origin where all decision variables equal zero.
سؤال
The simplex method does not guarantee an integer solution.
سؤال
At the initial basic feasible solution at the origin, only slack variables have a value greater than zero.
سؤال
The mathematical steps in the simplex method replicate the process in graphical analysis of moving from one extreme point on the solution boundary to another.
سؤال
The last step in solving a linear programming model manually with the simplex method is to convert the model into standard form.
سؤال
In solving a linear programming problem with simplex method, the number of basic variables is the same as the number of constraints in the original problem
سؤال
Slack variables are added to constraints and represent unused resources.
سؤال
Artificial variables are added to constraints and represent unused resources.
سؤال
In the simplex method, the model is put into the form of a table, and then a number of mathematical steps are performed on the table.
سؤال
At the initial basic feasible solution at the origin, only slack variables have a value greater than 1.
سؤال
The simplex method is a general mathematical solution technique for solving nonlinear programming problems.
سؤال
Multiple optimal solutions cannot be determined from the simplex method.
سؤال
The variable with the largest positive cj - zj is the ________ variable.
سؤال
The theoretical limit on the number of decision variables that can be handled by the simplex method is 50.
سؤال
A(n) ________ maximization linear programming problem has an artificial variable in the final simplex tableau where all cj - zj values are less than or equal to zero.
سؤال
The dual form of a linear program is used to determine how much one should pay for additional resources.
سؤال
Whereas the maximization primal model has ≤ constraints, the ________ dual model has ≥ constraints.
سؤال
In using the simplex method, ________ optimal solutions are identified by cj - zj = 0 for a non-basic variable.
سؤال
If the primal problem has three constraints, then the corresponding dual problem will have three ________.
سؤال
The first step in solving a linear programming model manually with the simplex method is to convert the model into ________ form.
سؤال
When solving a linear programming problem, a decision variable that leaves the basis in one iteration of the simplex method can return to the basis on a later iteration.
سؤال
The ________ column is the column corresponding to the entering variable.
سؤال
A change in the objective function coefficient of a basic variable cannot change the value of zj for a non-basic variable in the final simplex tableau.
سؤال
The quantity values on the right-hand side of the primal inequality constraints are the ________ coefficients in the dual.
سؤال
A primal maximization model with ≤ constraints converts to a ________ minimization model with constraints.
سؤال
The ________ variable allows for an initial basic feasible solution, but it has no meaning. Therefore, after we get the simplex tableau started, they are discarded in later iterations.
سؤال
Final tableaus cannot be used to conduct sensitivity analysis.
سؤال
In solving a minimization problem, artificial variables are assigned a ________ in the objective function to eliminate them from the final solution.
سؤال
The ________ values are computed by multiplying the cj column values by the variable column values and summing.
سؤال
________ variables are added to constraints and represent unused resources.
سؤال
The ________ values are contribution to profit for each variable.
سؤال
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What are the basic variables in the initial tableau?
سؤال
To determine the sensitivity range for the coefficient of a variable in the objective function, calculations are performed such that all values in the cj - zj row are ________.
سؤال
________ in linear programming is when a basic variable takes on a value of zero (i.e., a zero in the right-hand side of the constraints of the tableau).
سؤال
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for the objective function?
سؤال
Given the following linear programming problem:
maximizeZ=$100x1+80x2 subject to x1+2x2403x1+x260x1,x20\begin{array} { l l } \operatorname { maximize } & \mathrm { Z } = \$ 100 x _ { 1 } + 80 x _ { 2 } \\\text { subject to } & x _ { 1 } + 2 x _ { 2 } \leq 40 \\& 3 x _ { 1 } + x _ { 2 } \leq 60 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
Using the simplex method, what is the value for S1 in the final basic feasible solution?
سؤال
The ________ form of a linear program is used to determine how much one should pay for additional resources.
سؤال
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for X1?
سؤال
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What are the Cj values for the basic variables?
سؤال
A(n) ________ problem can be identified in the simplex procedure when it is not possible to select a pivot row.
سؤال
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the value of X1 in the final tableau?
سؤال
In a ________ problem, artificial variables are assigned a very high cost.
سؤال
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for X2?
سؤال
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the value of x2 in the final tableau?
سؤال
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the optimal value of this objective function?
سؤال
Solve the following problem using the simplex method.
 Minimize Z=3x1+4x2+8x3 Subject to: 2x1+x26emsp;emsp;emsp;emsp;x2+2x34emsp;emsp;emsp;emsp;x1,x20\begin{array} { l } \text { Minimize } \mathrm { Z } = 3 x _ { 1 } + 4 x _ { 2 } + 8 x _ { 3 } \\\text { Subject to: } \quad 2 x _ { 1 } + x _ { 2 } \geq 6 \\      x _ { 2 } + 2 x _ { 3 } \geq 4 \\       x _ { 1 } , x _ { 2 } \geq 0 \\\end{array}
سؤال
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
How many iterations did we have to perform before reaching the final tableau?
سؤال
Given the following linear programming problem:
maximizeZ=$100x1+80x2 subject to x1+2x2403x1+x260x1,x20\begin{array} { l l } \operatorname { maximize } & \mathrm { Z } = \$ 100 x _ { 1 } + 80 x _ { 2 } \\\text { subject to } & x _ { 1 } + 2 x _ { 2 } \leq 40 \\& 3 x _ { 1 } + x _ { 2 } \leq 60 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
Using the simplex method, what is the value for S2 in the optimal tableau?
سؤال
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What is the (Ci- Zi) value for S2 at the initial solution?
سؤال
Solve the following problem using the simplex method.
 Minimize Z=2x1+6x2 Subject to: 2x1+4x2123x1+2x29x1,x20\begin{array} { l } \text { Minimize } \mathrm { Z } = 2 x _ { 1 } + 6 x _ { 2 } \\\text { Subject to: } \quad 2 x _ { 1 } + 4 x _ { 2 } \leq 12 \\\qquad 3 x _ { 1 } + 2 x _ { 2 } \geq 9 \\x _ { 1 } , x _ { 2 } \geq 0\end{array}
سؤال
Given the following linear programming problem:

maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What is the (Cj - Zj) value for S1 at the initial solution?
سؤال
Slack variables are added to ________ constraints and represent unused resources.

A) ≤
B) <
C) ≥
D) >
E) =
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-To what value can the profit on red nail polish drop before the solution would change?
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much will the second marketing restriction be exceeded?
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much can the amount of space decrease before there is a change in the profit?
سؤال
The basic feasible solution in the initial simplex tableau is the origin where all decision variables equal:

A) 0
B) 1
C) -1
D) 1 or -1
سؤال
At the initial basic feasible solution at the origin, only slack variables have a value greater than:

A) 0
B) 1
C) -1
D) 1 or -1
سؤال
Consider the following linear programming problem and the corresponding final tableau.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18 Consider the following linear programming problem and the corresponding final tableau. MAX Z = 3x1 + 5x2 s.t. x1 ≤ 4 2x2 ≤ 12 3x1 + 2x2 ≥ 18   What is the sensitivity range for the first constraint?<div style=padding-top: 35px>
What is the sensitivity range for the first constraint?
سؤال
You are offered the chance to obtain more space. The offer is for 15 units and the total price is 1500. What should you do?
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much can the profit on green nail polish increase before the solution would change?
سؤال
Consider the following linear programming problem and the corresponding final tableau.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18 Consider the following linear programming problem and the corresponding final tableau. MAX Z = 3x1 + 5x2 s.t. x1 ≤ 4 2x2 ≤ 12 3x1 + 2x2 ≥ 18   What is the shadow price for each constraint?<div style=padding-top: 35px>
What is the shadow price for each constraint?
سؤال
The ________ step in solving a linear programming model manually with the simplex method is to convert the model into standard form.

A) first
B) second
C) last
D) only
سؤال
Row operations are used to solve simultaneous equations where equations are ________ by constants and added to or subtracted from each other.

A) converted
B) restrained
C) divided
D) multiplied
سؤال
The simplex method is a general mathematical solution technique for solving ________ programming problems.

A) integer
B) non-linear
C) linear
D) A, B, and C
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-What is the profit?
سؤال
At the initial basic feasible solution at the origin, only ________ variables have a value greater than zero.

A) linear
B) slack
C) non-linear
D) integer
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-How much time will be used?
سؤال
The simplex method ________ be used to solve quadratic programming problems.

A) can
B) cannot
C) may
D) should
سؤال
Write the dual form of the following linear program.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18
سؤال
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-How much space will be left unused?
سؤال
Consider the following linear programming problem:
 MAX Z=10x1+30x2 s.t. 4x1+6x2128x1+4x216\begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\\text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\& 8 x _ { 1 } + 4 x _ { 2 } \leq 16\end{array}

Use the two tables below to create the initial tableau and perform 1 pivot.

 Consider the following linear programming problem:  \begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.     <div style=padding-top: 35px>
 Consider the following linear programming problem:  \begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.     <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/90
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 17: the Simplex Solution Method
1
In using the simplex method, the number of basic variables is equal to the number of constraints.
True
2
Row operations are used to solve simultaneous equations where equations are multiplied by constants and added or subtracted from each other.
True
3
A basic feasible solution satisfies the model constraints and has the same number of variables with negative values as there are constraints.
False
4
The simplex method can be used to solve quadratic programming problems.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
5
A basic feasible solution satisfies the model constraints and has the same number of variables with non-negative values as there are constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
6
The simplex method is a general mathematical solution technique for solving linear programming problems.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
7
The first step in solving a linear programming model manually with the simplex method is to convert the model into standard form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
8
The simplex method cannot be used to solve quadratic programming problems.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
9
The simplex method moves from one better solution to another until the best one is found, and then it stops.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
10
The basic feasible solution in the initial simplex tableau is the origin where all decision variables equal zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
11
The simplex method does not guarantee an integer solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
12
At the initial basic feasible solution at the origin, only slack variables have a value greater than zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
13
The mathematical steps in the simplex method replicate the process in graphical analysis of moving from one extreme point on the solution boundary to another.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
14
The last step in solving a linear programming model manually with the simplex method is to convert the model into standard form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
15
In solving a linear programming problem with simplex method, the number of basic variables is the same as the number of constraints in the original problem
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
16
Slack variables are added to constraints and represent unused resources.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
17
Artificial variables are added to constraints and represent unused resources.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
18
In the simplex method, the model is put into the form of a table, and then a number of mathematical steps are performed on the table.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
19
At the initial basic feasible solution at the origin, only slack variables have a value greater than 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
20
The simplex method is a general mathematical solution technique for solving nonlinear programming problems.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
21
Multiple optimal solutions cannot be determined from the simplex method.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
22
The variable with the largest positive cj - zj is the ________ variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
23
The theoretical limit on the number of decision variables that can be handled by the simplex method is 50.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
24
A(n) ________ maximization linear programming problem has an artificial variable in the final simplex tableau where all cj - zj values are less than or equal to zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
25
The dual form of a linear program is used to determine how much one should pay for additional resources.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
26
Whereas the maximization primal model has ≤ constraints, the ________ dual model has ≥ constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
27
In using the simplex method, ________ optimal solutions are identified by cj - zj = 0 for a non-basic variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
28
If the primal problem has three constraints, then the corresponding dual problem will have three ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
29
The first step in solving a linear programming model manually with the simplex method is to convert the model into ________ form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
30
When solving a linear programming problem, a decision variable that leaves the basis in one iteration of the simplex method can return to the basis on a later iteration.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
31
The ________ column is the column corresponding to the entering variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
32
A change in the objective function coefficient of a basic variable cannot change the value of zj for a non-basic variable in the final simplex tableau.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
33
The quantity values on the right-hand side of the primal inequality constraints are the ________ coefficients in the dual.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
34
A primal maximization model with ≤ constraints converts to a ________ minimization model with constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
35
The ________ variable allows for an initial basic feasible solution, but it has no meaning. Therefore, after we get the simplex tableau started, they are discarded in later iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
36
Final tableaus cannot be used to conduct sensitivity analysis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
37
In solving a minimization problem, artificial variables are assigned a ________ in the objective function to eliminate them from the final solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
38
The ________ values are computed by multiplying the cj column values by the variable column values and summing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
39
________ variables are added to constraints and represent unused resources.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
40
The ________ values are contribution to profit for each variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
41
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What are the basic variables in the initial tableau?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
42
To determine the sensitivity range for the coefficient of a variable in the objective function, calculations are performed such that all values in the cj - zj row are ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
43
________ in linear programming is when a basic variable takes on a value of zero (i.e., a zero in the right-hand side of the constraints of the tableau).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
44
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for the objective function?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
45
Given the following linear programming problem:
maximizeZ=$100x1+80x2 subject to x1+2x2403x1+x260x1,x20\begin{array} { l l } \operatorname { maximize } & \mathrm { Z } = \$ 100 x _ { 1 } + 80 x _ { 2 } \\\text { subject to } & x _ { 1 } + 2 x _ { 2 } \leq 40 \\& 3 x _ { 1 } + x _ { 2 } \leq 60 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
Using the simplex method, what is the value for S1 in the final basic feasible solution?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
46
The ________ form of a linear program is used to determine how much one should pay for additional resources.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
47
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for X1?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
48
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What are the Cj values for the basic variables?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
49
A(n) ________ problem can be identified in the simplex procedure when it is not possible to select a pivot row.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
50
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the value of X1 in the final tableau?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
51
In a ________ problem, artificial variables are assigned a very high cost.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
52
Given the following linear programming problem:
maximize Z = $100x1 + 80x2
subject to x1 + 2x2 ≤ 40
3x1 + x2 ≤ 60
x1, x2 ≥ 0
Using the simplex method, what is the optimal value for X2?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
53
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the value of x2 in the final tableau?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
54
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
What is the optimal value of this objective function?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
55
Solve the following problem using the simplex method.
 Minimize Z=3x1+4x2+8x3 Subject to: 2x1+x26emsp;emsp;emsp;emsp;x2+2x34emsp;emsp;emsp;emsp;x1,x20\begin{array} { l } \text { Minimize } \mathrm { Z } = 3 x _ { 1 } + 4 x _ { 2 } + 8 x _ { 3 } \\\text { Subject to: } \quad 2 x _ { 1 } + x _ { 2 } \geq 6 \\&emsp; &emsp;&emsp; &emsp;x _ { 2 } + 2 x _ { 3 } \geq 4 \\&emsp; &emsp;&emsp; &emsp; x _ { 1 } , x _ { 2 } \geq 0 \\\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
56
Given the following linear programming problem:
maximize 4x1 + 3x2
subject to 4x1 + 3x2 ≤ 23
5x1 - x2 ≤ 5
x1, x2 ≥ 0
How many iterations did we have to perform before reaching the final tableau?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
57
Given the following linear programming problem:
maximizeZ=$100x1+80x2 subject to x1+2x2403x1+x260x1,x20\begin{array} { l l } \operatorname { maximize } & \mathrm { Z } = \$ 100 x _ { 1 } + 80 x _ { 2 } \\\text { subject to } & x _ { 1 } + 2 x _ { 2 } \leq 40 \\& 3 x _ { 1 } + x _ { 2 } \leq 60 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
Using the simplex method, what is the value for S2 in the optimal tableau?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
58
Given the following linear programming problem:
maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What is the (Ci- Zi) value for S2 at the initial solution?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
59
Solve the following problem using the simplex method.
 Minimize Z=2x1+6x2 Subject to: 2x1+4x2123x1+2x29x1,x20\begin{array} { l } \text { Minimize } \mathrm { Z } = 2 x _ { 1 } + 6 x _ { 2 } \\\text { Subject to: } \quad 2 x _ { 1 } + 4 x _ { 2 } \leq 12 \\\qquad 3 x _ { 1 } + 2 x _ { 2 } \geq 9 \\x _ { 1 } , x _ { 2 } \geq 0\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
60
Given the following linear programming problem:

maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array}
What is the (Cj - Zj) value for S1 at the initial solution?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
61
Slack variables are added to ________ constraints and represent unused resources.

A) ≤
B) <
C) ≥
D) >
E) =
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
62
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-To what value can the profit on red nail polish drop before the solution would change?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
63
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much will the second marketing restriction be exceeded?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
64
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much can the amount of space decrease before there is a change in the profit?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
65
The basic feasible solution in the initial simplex tableau is the origin where all decision variables equal:

A) 0
B) 1
C) -1
D) 1 or -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
66
At the initial basic feasible solution at the origin, only slack variables have a value greater than:

A) 0
B) 1
C) -1
D) 1 or -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
67
Consider the following linear programming problem and the corresponding final tableau.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18 Consider the following linear programming problem and the corresponding final tableau. MAX Z = 3x1 + 5x2 s.t. x1 ≤ 4 2x2 ≤ 12 3x1 + 2x2 ≥ 18   What is the sensitivity range for the first constraint?
What is the sensitivity range for the first constraint?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
68
You are offered the chance to obtain more space. The offer is for 15 units and the total price is 1500. What should you do?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
69
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-By how much can the profit on green nail polish increase before the solution would change?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
70
Consider the following linear programming problem and the corresponding final tableau.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18 Consider the following linear programming problem and the corresponding final tableau. MAX Z = 3x1 + 5x2 s.t. x1 ≤ 4 2x2 ≤ 12 3x1 + 2x2 ≥ 18   What is the shadow price for each constraint?
What is the shadow price for each constraint?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
71
The ________ step in solving a linear programming model manually with the simplex method is to convert the model into standard form.

A) first
B) second
C) last
D) only
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
72
Row operations are used to solve simultaneous equations where equations are ________ by constants and added to or subtracted from each other.

A) converted
B) restrained
C) divided
D) multiplied
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
73
The simplex method is a general mathematical solution technique for solving ________ programming problems.

A) integer
B) non-linear
C) linear
D) A, B, and C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
74
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-What is the profit?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
75
At the initial basic feasible solution at the origin, only ________ variables have a value greater than zero.

A) linear
B) slack
C) non-linear
D) integer
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
76
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-How much time will be used?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
77
The simplex method ________ be used to solve quadratic programming problems.

A) can
B) cannot
C) may
D) should
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
78
Write the dual form of the following linear program.
MAX Z = 3x1 + 5x2
s.t. x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≥ 18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
79
The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}

-How much space will be left unused?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
80
Consider the following linear programming problem:
 MAX Z=10x1+30x2 s.t. 4x1+6x2128x1+4x216\begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\\text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\& 8 x _ { 1 } + 4 x _ { 2 } \leq 16\end{array}

Use the two tables below to create the initial tableau and perform 1 pivot.

 Consider the following linear programming problem:  \begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.
 Consider the following linear programming problem:  \begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 90 في هذه المجموعة.