Deck 5: What-If Analysis for Linear Programming

ملء الشاشة (f)
exit full mode
سؤال
Changing the objective function coefficients may or may not change the optimal solution, but it will always change the value of the objective function.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
An optimal solution is only optimal with respect to a particular mathematical model that provides only a representation of the actual problem.
سؤال
If the optimal solution will remain the same over a wide range of values for a particular coefficient in the objective function, then management will want to take special care to narrow this estimate down.
سؤال
Every change in the value of an objective function coefficient will lead to a changed optimal solution.
سؤال
When certain parameters of a model represent managerial policy decisions, what-if analysis provides information about what the impact would be of altering these policy decisions.
سؤال
The allowable range gives ranges of values for the objective function coefficients within which the values of the decision variables are optimal.
سؤال
If the change to a right-hand side is within the allowable range, the solution will remain the same.
سؤال
Shadow price analysis is widely used to help management find the best trade-off between costs and benefits for a problem.
سؤال
According to the 100% rule for simultaneous changes in objective function coefficients, if the sum of the percentage changes exceeds 100%, the optimal solution definitely will change.
سؤال
Whenever proportional changes are made to all the unit profits in a problem, the optimal solution will remain the same.
سؤال
When a change in the value of an objective function coefficient remains within the allowable range, the optimal solution will also remain the same.
سؤال
A shadow price tells how much a decision variable can be increased or decreased without changing the value of the solution.
سؤال
The term "allowable range for an objective function coefficient" refers to a constraint's right-hand side quantity.
سؤال
The term "allowable range for the right-hand-side" refers to coefficients of the objective function.
سؤال
It is usually quite easy to find the needed data for a linear programming study.
سؤال
The purpose of a linear programming study is to help guide management's final decision by providing insights.
سؤال
When maximizing profit in a linear programming problem, the allowable increase and allowable decrease columns in the sensitivity report make it possible to find the range over which the profitability does not change.
سؤال
A shadow price indicates how much the optimal value of the objective function will increase per unit increase in the right-hand side of a constraint.
سؤال
If the change to a right-hand side is within the allowable range, the value of the shadow price remains valid.
سؤال
The allowable range for an objective function coefficient assumes that the original estimates for all the other coefficients are completely accurate so that this is the only one whose true value may differ from its original estimate.
سؤال
Managerial decisions regarding right-hand sides are often interrelated and so frequently are considered simultaneously.
سؤال
If a change is made in only one of the objective function coefficients:

A) the slope of the objective function line always will change.
B) the optimal solution always will change.
C) one or more of the decision variables always will change.
D) All of the choices are correct.
E) None of the choices is correct.
سؤال
What-if analysis can:
I) be done graphically for problems with two decision variables.
II) reduce a manager's confidence in the model that has been formulated.
III) increase a manager's confidence in the model that has been formulated.

A) I only.
B) II only.
C) III only.
D) All of the these.
E) I and III only.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the allowable range for the right-hand-side for Resource C?

A) 18 ? RHSc ? ?
B) ? ? RHSc ? 62
C) ?2 ?RHSc ? ?
D) ? ? ? RHSc ? 40
E) 0 ? RHSc ? 22
سؤال
A parameter analysis report can be used to easily investigate the changes in any number of data cells.
سؤال
In a problem with 4 decision variables, the 100% rule indicates that each objective coefficient can be safely increased by what amount without invalidating the current optimal solution?

A) 25%.
B) 25% of the allowable increase of that coefficient.
C) 100%.
D) 25% of the range of optimality.
E) It can't be determined from the information given.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient for Activity 3 in the objective function changes to $30, then the objective function value:

A) will increase by $70.
B) is $0.
C) will increase by $30.
D) will remain the same.
E) will increase by an unknown amount.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient for Activity 1 in the objective function changes to $40, then the objective function value:

A) will increase by $77.80.
B) will increase by $23.
C) will increase by $30.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
A parameter analysis report can only be used to investigate changes in a single data cell at a time.
سؤال
variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the optimal objective function value for this problem?

A) It cannot be determined from the given information.
B) $7.78
C) $240
D) $90
E) $330
سؤال
If the sum of the percentage changes of the right-hand sides does not exceed 100%, then the solution will definitely remain optimal.
سؤال
Which of the following are benefits of what-if analysis?

A) It pinpoints the sensitive parameters of the model.
B) It gives the new optimal solution if conditions change.
C) It tells management what policy decisions to make.
D) All of the choices are correct.
E) None of the choices is correct.
سؤال
In linear programming, what-if analysis is associated with determining the effect of changing:
I) objective function coefficients.
II) right-hand side values of constraints.
III) decision variable values.

A) objective function coefficients and right-hand side values of constraints.
B) right-hand side values of constraints and decision variable values.
C) objective function coefficients, right-hand side values of constraints, and decision variable values.
D) objective function coefficients and decision variable values.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the allowable range for the objective coefficient for Activity 2?

A) ?10 ? A2 ? 50
B) ?44 ? A2 ? 16
C) ?4 ? A2 ? 56
D) 30 ? A2 ? 90
E) 20 ? A2 ? 80
سؤال
When a change occurs in the right-hand side values of one of the constraints, a proportional change will occur in one of the coefficients of the objective function.
سؤال
If the right-hand side value of a constraint in a two variable linear programming problems is changed, then:

A) the optimal measure of performance may change.
B) a parallel shift must be made in the graph of that constraint.
C) the optimal values for one or more of the decision variables may change.
D) All of the choices are correct.
E) None of the choices is correct.
سؤال
What-if analysis:

A) may involve changes in the objective function coefficients.
B) requires that only one parameter change while the rest are held fixed.
C) may involve changes in the right-hand side values.
D) All of the choices are correct.
E) None of the choices is correct.
سؤال
When even a small change in the value of a coefficient in the objective function can change the optimal solution, the coefficient is called:

A) optimal.
B) sensitive.
C) out of the range.
D) within the range.
E) None of the choices is correct.
سؤال
A shadow price reflects which of the following in a maximization problem?

A) The marginal cost of adding additional resources.
B) The marginal gain in the objective value realized by adding one unit of a resource.
C) The marginal loss in the objective value realized by adding one unit of a resource.
D) The marginal gain in the objective value realized by subtracting one unit of a resource.
E) None of the choices is correct.
سؤال
A parameter analysis report re-solves the problem for a range of values of a data cell.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient for Activity 2 in the objective function changes to $400, then the objective function value:

A) will increase by $7,500.
B) will increase by $2,750.
C) will increase by $100.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient for Activity 1 in the objective function changes to $50, then the objective function value:

A) will decrease by $450.
B) is $0.
C) will decrease by $2750.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B changes to 10, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Which parameter is most sensitive to an increase in its value?

A) The objective coefficient of Activity 1.
B) The objective coefficient of Activity 2.
C) The objective coefficient of Activity 3.
D) All of the choices are correct.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the allowable range of the right-hand-side for Resource A?

A) -? ? RHSA ? 60
B) 0 ? RHSA ? 110
C) -? ? RHSA ? 110
D) 110 ? RHSA ? 1600
E) 0 ? RHSA ? 160
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C changes to 130, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the allowable range for the objective function coefficient for Activity 3?

A) 150 ? A3 ? ?
B) 0 ? A3 ? 650
C) 0 ? A3 ? 250
D) 400 ? A3 ? ?
E) 300 ? A3 ? 500
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource B changes to 80, then the objective function value:

A) will decrease by $750.
B) will decrease by $1,500.
C) will decrease by $2,250.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient of Activity 1 in the objective function changes to $10, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the above.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient of Activity 2 in the objective function changes to $100, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource A changes to 10, then the objective function value:

A) will decrease by $12.50.
B) will decrease by $125.
C) will decrease by $77.80.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
A parameter analysis report can be used to investigate the changes in how many data cells at a time?

A) 1
B) 2
C) 3
D) All of the these.
E) 1 or 2.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the objective coefficients of Activity 2 and Activity 3 are both decreased by $100, then:

A) the optimal solution remains the same.
B) the optimal solution may or may not remain the same.
C) the optimal solution will change.
D) the shadow prices are valid.
E) None of the choices is correct.
سؤال
The allowable range for an objective function coefficient indicates

A) The prices a firm is allowed to charge for its product.
B) The largest error in estimating objective coefficients that will not affect the optimal solution.
C) The amount of each resource available for use.
D) The shadow price of each resource.
E) The price a firm would be willing to obtain more of a resource.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C is increased by 40, and the right-hand side of Resource B is decreased by 20, then:

A) the optimal solution remains the same.
B) the optimal solution will change.
C) the shadow price is valid.
D) the shadow price may or may not be not valid.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B changes to 10, then the objective function value:

A) will decrease by $120.
B) will decrease by $60.
C) will decrease by $20.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C changes to 140, then the objective function value:

A) will increase by $137.50.
B) will increase by $57.50.
C) will increase by $80.
D) will remain the same.
E) can only be discovered by resolving the problem.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficients of Activity 1 and Activity 2 in the objective function are both increased by $10, then:

A) the optimal solution remains the same.
B) the optimal solution may or may not remain the same.
C) the optimal solution will change.
D) the shadow prices are valid.
E) None of the choices is correct.
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the optimal objective function value for this problem?

A) It cannot be determined from the given information.
B) 1,200
C) 975
D) 8,250
E) 500
سؤال
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B is increased by 30, and the right-hand side of Resource C is decreased by 10, then:

A) the optimal solution remains the same.
B) the optimal solution will change.
C) the shadow prices are valid.
D) the shadow prices may or may not be valid.
E) None of the choices is correct.
سؤال
Note: This question requires access to Solver.
In the following linear programming problem, what is the allowable increase for the objective function coefficient for variable x?
 Maximize P=3x+15y subject to 2x+4y125x+2y10 and x0,y0\begin{array} { l l } \text { Maximize } P = 3 x + 15 y \\\text { subject to } & 2 x + 4 y \leq 12 \\& 5 x + 2 y \leq 10 \\\text { and } \quad x \geq 0 , y \geq 0\end{array}

A) 3
B) 4.5
C) 9
D) 15
E) ? (infinity)
سؤال
When conducting robust optimization
I) Use the maximum value of each objective function coefficient for a maximization problem.
II) Use the minimum value of each objective function coefficient for a maximization problem.
III) Use the maximum value of each objective function coefficient for a minimization problem.

A) I only
B) II only
C) III only
D) I and III only
E) II and III only
سؤال
One approach to robust optimization is to modify the original optimization problem by

A) Assigning average values to each uncertain parameter.
B) Assigning conservative values to each uncertain parameter.
C) Assigning optimistic values to each uncertain parameter.
D) Assigning random values to each uncertain parameter.
E) Assigning precise values to each uncertain parameter.
سؤال
Resource B has right-hand side allowable decrease of 50. Resource C has right-hand side allowable decrease of 100. If the right-hand side of Resource B decreases by 30 and the right-hand side of Resource C decreases by 40, then

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow prices remain valid.
D) the shadow prices do not remain valid.
E) None of the choices is correct.
سؤال
To determine if an increase in an objective function coefficient will lead to a change in final values for decision variables, an analyst can do which of the following?
I) Compare the increase in the objective function coefficient to the allowable decrease.
II) Compare the increase in the objective function coefficient to the allowable increase.
III) Rerun the optimization to see if the final values change.

A) I only.
B) II only.
C) III only.
D) I and III only.
E) II and III only.
سؤال
Chance constraints are an available option in
I. Graphical linear programming.
II. The Solver tool included with Excel.
III. Analytic Solver.

A) I only
B) II only
C) III only
D) II and III only
E) I, II, and III
سؤال
Note: This question requires access to Solver.
In the following linear programming problem, what is the allowable increase in the right-hand side of the first constraint?
 Maximize P=3x+15y subject to 2x+4y125x+2y10 and x0,y0\begin{array} { l l } \text { Maximize } P = 3 x + 15 y \\\text { subject to } & 2 x + 4 y \leq 12 \\& 5 x + 2 y \leq 10 \\\text { and } \quad x \geq 0 , y \geq 0\end{array}

A) 8
B) 10
C) 12
D) 15
E) ? (infinity)
سؤال
Activity 1 has an objective function coefficient allowable increase of 30. Activity 2 has an objective function coefficient allowable increase of 60. If both activities objective function coefficient increases by 20, what will happen to the final values in the optimal solution?

A) The optimal solution remains the same.
B) The optimal solution may or may not remain the same.
C) The optimal solution will change.
D) The shadow prices are valid.
E) None of the choices is correct.
سؤال
Note: This question requires access to Solver.
In the following linear programming problem, how much would the firm be willing to pay for an additional 5 units of Resource A?
Maximize P=3x+15yP = 3 x + 15 y
subject to 2x+4y12\quad 2 x + 4 y \leq 12 (Resource A)
5x+2y105 x + 2 y \leq 10 (Resource B)
and x0,y0\quad x \geq 0 , y \geq 0 .

A) It is impossible to determine.
B) 7.50
C) 11.25
D) 15
E) 18.75

سؤال
In robust optimization, what is meant by the term "soft constraint"?

A) A constraint that is not violated.
B) A constraint that has a shadow price of zero.
C) A constraint that can be violated slightly without serious repercussions.
D) A constraint that can be violated dramatically without serious repercussions.
E) A constraint that cannot be violated.
سؤال
In robust optimization, what is meant by the term "hard constraint"?

A) A constraint that is not violated.
B) A constraint that has a shadow price of zero.
C) A constraint that can be violated slightly without serious repercussions.
D) A constraint that can be violated dramatically without serious repercussions.
E) A constraint that cannot be violated.
سؤال
The Solver report that shows the allowable ranges for objective function coefficients, allowable ranges for constraint right-hand sides, and shadow prices is called the

A) Range report.
B) Sensitivity report.
C) Parameter report.
D) Solution report.
E) Answer report.
سؤال
Note: This question requires access to Solver.
In the following linear programming problem, how much would the firm be willing to pay for an additional 5 units of Resource B?
Maximize P=3x+15yP = 3 x + 15 y
subject to 2x+4y12\quad 2 x + 4 y \leq 12 (Resource A)
5x+2y105 x + 2 y \leq 10 (Resource B)
and x0,y0\quad x \geq 0 , y \geq 0 .

A) Nothing
B) 11.25
C) 15
D) 18.75
E) It is impossible to determine.
سؤال
When conducting robust optimization
I) The right-hand side of each ≤ constraint should be replaced with the minimum value.
II) The right-hand side of each ≤ constraint should be replaced with the maximum value.
III) The right-hand side of each ≥ constraint should be replaced with the maximum value.

A) I only
B) II only
C) III only
D) I and III only
E) II and III only
سؤال
A chance constraint
I) Replaces the right-hand side with the minimum value.
II) Allows the objective function coefficients to be replaced with random numbers.
III) Ensures that the chance constraint will never be violated.
IV) Can be used to model a soft constraint which can be violated at times.

A) I only
B) II only
C) III only
D) IV only
E) I and II only
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/75
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 5: What-If Analysis for Linear Programming
1
Changing the objective function coefficients may or may not change the optimal solution, but it will always change the value of the objective function.
False
2
An optimal solution is only optimal with respect to a particular mathematical model that provides only a representation of the actual problem.
True
3
If the optimal solution will remain the same over a wide range of values for a particular coefficient in the objective function, then management will want to take special care to narrow this estimate down.
False
4
Every change in the value of an objective function coefficient will lead to a changed optimal solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
5
When certain parameters of a model represent managerial policy decisions, what-if analysis provides information about what the impact would be of altering these policy decisions.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
6
The allowable range gives ranges of values for the objective function coefficients within which the values of the decision variables are optimal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
7
If the change to a right-hand side is within the allowable range, the solution will remain the same.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
8
Shadow price analysis is widely used to help management find the best trade-off between costs and benefits for a problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
9
According to the 100% rule for simultaneous changes in objective function coefficients, if the sum of the percentage changes exceeds 100%, the optimal solution definitely will change.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
10
Whenever proportional changes are made to all the unit profits in a problem, the optimal solution will remain the same.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
11
When a change in the value of an objective function coefficient remains within the allowable range, the optimal solution will also remain the same.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
12
A shadow price tells how much a decision variable can be increased or decreased without changing the value of the solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
13
The term "allowable range for an objective function coefficient" refers to a constraint's right-hand side quantity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
14
The term "allowable range for the right-hand-side" refers to coefficients of the objective function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
15
It is usually quite easy to find the needed data for a linear programming study.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
16
The purpose of a linear programming study is to help guide management's final decision by providing insights.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
17
When maximizing profit in a linear programming problem, the allowable increase and allowable decrease columns in the sensitivity report make it possible to find the range over which the profitability does not change.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
18
A shadow price indicates how much the optimal value of the objective function will increase per unit increase in the right-hand side of a constraint.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
19
If the change to a right-hand side is within the allowable range, the value of the shadow price remains valid.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
20
The allowable range for an objective function coefficient assumes that the original estimates for all the other coefficients are completely accurate so that this is the only one whose true value may differ from its original estimate.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
21
Managerial decisions regarding right-hand sides are often interrelated and so frequently are considered simultaneously.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
22
If a change is made in only one of the objective function coefficients:

A) the slope of the objective function line always will change.
B) the optimal solution always will change.
C) one or more of the decision variables always will change.
D) All of the choices are correct.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
23
What-if analysis can:
I) be done graphically for problems with two decision variables.
II) reduce a manager's confidence in the model that has been formulated.
III) increase a manager's confidence in the model that has been formulated.

A) I only.
B) II only.
C) III only.
D) All of the these.
E) I and III only.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
24
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the allowable range for the right-hand-side for Resource C?

A) 18 ? RHSc ? ?
B) ? ? RHSc ? 62
C) ?2 ?RHSc ? ?
D) ? ? ? RHSc ? 40
E) 0 ? RHSc ? 22
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
25
A parameter analysis report can be used to easily investigate the changes in any number of data cells.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
26
In a problem with 4 decision variables, the 100% rule indicates that each objective coefficient can be safely increased by what amount without invalidating the current optimal solution?

A) 25%.
B) 25% of the allowable increase of that coefficient.
C) 100%.
D) 25% of the range of optimality.
E) It can't be determined from the information given.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
27
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient for Activity 3 in the objective function changes to $30, then the objective function value:

A) will increase by $70.
B) is $0.
C) will increase by $30.
D) will remain the same.
E) will increase by an unknown amount.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
28
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient for Activity 1 in the objective function changes to $40, then the objective function value:

A) will increase by $77.80.
B) will increase by $23.
C) will increase by $30.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
29
A parameter analysis report can only be used to investigate changes in a single data cell at a time.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
30
variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the optimal objective function value for this problem?

A) It cannot be determined from the given information.
B) $7.78
C) $240
D) $90
E) $330
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
31
If the sum of the percentage changes of the right-hand sides does not exceed 100%, then the solution will definitely remain optimal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
32
Which of the following are benefits of what-if analysis?

A) It pinpoints the sensitive parameters of the model.
B) It gives the new optimal solution if conditions change.
C) It tells management what policy decisions to make.
D) All of the choices are correct.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
33
In linear programming, what-if analysis is associated with determining the effect of changing:
I) objective function coefficients.
II) right-hand side values of constraints.
III) decision variable values.

A) objective function coefficients and right-hand side values of constraints.
B) right-hand side values of constraints and decision variable values.
C) objective function coefficients, right-hand side values of constraints, and decision variable values.
D) objective function coefficients and decision variable values.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
34
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
What is the allowable range for the objective coefficient for Activity 2?

A) ?10 ? A2 ? 50
B) ?44 ? A2 ? 16
C) ?4 ? A2 ? 56
D) 30 ? A2 ? 90
E) 20 ? A2 ? 80
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
35
When a change occurs in the right-hand side values of one of the constraints, a proportional change will occur in one of the coefficients of the objective function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
36
If the right-hand side value of a constraint in a two variable linear programming problems is changed, then:

A) the optimal measure of performance may change.
B) a parallel shift must be made in the graph of that constraint.
C) the optimal values for one or more of the decision variables may change.
D) All of the choices are correct.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
37
What-if analysis:

A) may involve changes in the objective function coefficients.
B) requires that only one parameter change while the rest are held fixed.
C) may involve changes in the right-hand side values.
D) All of the choices are correct.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
38
When even a small change in the value of a coefficient in the objective function can change the optimal solution, the coefficient is called:

A) optimal.
B) sensitive.
C) out of the range.
D) within the range.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
39
A shadow price reflects which of the following in a maximization problem?

A) The marginal cost of adding additional resources.
B) The marginal gain in the objective value realized by adding one unit of a resource.
C) The marginal loss in the objective value realized by adding one unit of a resource.
D) The marginal gain in the objective value realized by subtracting one unit of a resource.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
40
A parameter analysis report re-solves the problem for a range of values of a data cell.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
41
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient for Activity 2 in the objective function changes to $400, then the objective function value:

A) will increase by $7,500.
B) will increase by $2,750.
C) will increase by $100.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
42
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient for Activity 1 in the objective function changes to $50, then the objective function value:

A) will decrease by $450.
B) is $0.
C) will decrease by $2750.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
43
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B changes to 10, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
44
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Which parameter is most sensitive to an increase in its value?

A) The objective coefficient of Activity 1.
B) The objective coefficient of Activity 2.
C) The objective coefficient of Activity 3.
D) All of the choices are correct.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
45
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the allowable range of the right-hand-side for Resource A?

A) -? ? RHSA ? 60
B) 0 ? RHSA ? 110
C) -? ? RHSA ? 110
D) 110 ? RHSA ? 1600
E) 0 ? RHSA ? 160
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
46
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C changes to 130, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
47
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the allowable range for the objective function coefficient for Activity 3?

A) 150 ? A3 ? ?
B) 0 ? A3 ? 650
C) 0 ? A3 ? 250
D) 400 ? A3 ? ?
E) 300 ? A3 ? 500
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
48
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource B changes to 80, then the objective function value:

A) will decrease by $750.
B) will decrease by $1,500.
C) will decrease by $2,250.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
49
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficient of Activity 1 in the objective function changes to $10, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
50
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the coefficient of Activity 2 in the objective function changes to $100, then:

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
51
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource A changes to 10, then the objective function value:

A) will decrease by $12.50.
B) will decrease by $125.
C) will decrease by $77.80.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
52
A parameter analysis report can be used to investigate the changes in how many data cells at a time?

A) 1
B) 2
C) 3
D) All of the these.
E) 1 or 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
53
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the objective coefficients of Activity 2 and Activity 3 are both decreased by $100, then:

A) the optimal solution remains the same.
B) the optimal solution may or may not remain the same.
C) the optimal solution will change.
D) the shadow prices are valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
54
The allowable range for an objective function coefficient indicates

A) The prices a firm is allowed to charge for its product.
B) The largest error in estimating objective coefficients that will not affect the optimal solution.
C) The amount of each resource available for use.
D) The shadow price of each resource.
E) The price a firm would be willing to obtain more of a resource.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
55
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C is increased by 40, and the right-hand side of Resource B is decreased by 20, then:

A) the optimal solution remains the same.
B) the optimal solution will change.
C) the shadow price is valid.
D) the shadow price may or may not be not valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
56
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B changes to 10, then the objective function value:

A) will decrease by $120.
B) will decrease by $60.
C) will decrease by $20.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
57
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
If the right-hand side of Resource C changes to 140, then the objective function value:

A) will increase by $137.50.
B) will increase by $57.50.
C) will increase by $80.
D) will remain the same.
E) can only be discovered by resolving the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
58
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the coefficients of Activity 1 and Activity 2 in the objective function are both increased by $10, then:

A) the optimal solution remains the same.
B) the optimal solution may or may not remain the same.
C) the optimal solution will change.
D) the shadow prices are valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
59
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array}
What is the optimal objective function value for this problem?

A) It cannot be determined from the given information.
B) 1,200
C) 975
D) 8,250
E) 500
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
60
Variable cells
 Cell  Name  Final  Value  Reduced  Cost  Objective  Codficient  Allowable  Increase  Allowuble  Decrease  $B$6  Activity 1 30302317 $C$6  Activity 2 60405010 $D$6  Activity 3 072071E+30\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Constraints
 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Resource A 207.78201012.5$E$3 Resource B 306305010$E$4 Resource C 180401E+3022\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
If the right-hand side of Resource B is increased by 30, and the right-hand side of Resource C is decreased by 10, then:

A) the optimal solution remains the same.
B) the optimal solution will change.
C) the shadow prices are valid.
D) the shadow prices may or may not be valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
61
Note: This question requires access to Solver.
In the following linear programming problem, what is the allowable increase for the objective function coefficient for variable x?
 Maximize P=3x+15y subject to 2x+4y125x+2y10 and x0,y0\begin{array} { l l } \text { Maximize } P = 3 x + 15 y \\\text { subject to } & 2 x + 4 y \leq 12 \\& 5 x + 2 y \leq 10 \\\text { and } \quad x \geq 0 , y \geq 0\end{array}

A) 3
B) 4.5
C) 9
D) 15
E) ? (infinity)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
62
When conducting robust optimization
I) Use the maximum value of each objective function coefficient for a maximization problem.
II) Use the minimum value of each objective function coefficient for a maximization problem.
III) Use the maximum value of each objective function coefficient for a minimization problem.

A) I only
B) II only
C) III only
D) I and III only
E) II and III only
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
63
One approach to robust optimization is to modify the original optimization problem by

A) Assigning average values to each uncertain parameter.
B) Assigning conservative values to each uncertain parameter.
C) Assigning optimistic values to each uncertain parameter.
D) Assigning random values to each uncertain parameter.
E) Assigning precise values to each uncertain parameter.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
64
Resource B has right-hand side allowable decrease of 50. Resource C has right-hand side allowable decrease of 100. If the right-hand side of Resource B decreases by 30 and the right-hand side of Resource C decreases by 40, then

A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow prices remain valid.
D) the shadow prices do not remain valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
65
To determine if an increase in an objective function coefficient will lead to a change in final values for decision variables, an analyst can do which of the following?
I) Compare the increase in the objective function coefficient to the allowable decrease.
II) Compare the increase in the objective function coefficient to the allowable increase.
III) Rerun the optimization to see if the final values change.

A) I only.
B) II only.
C) III only.
D) I and III only.
E) II and III only.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
66
Chance constraints are an available option in
I. Graphical linear programming.
II. The Solver tool included with Excel.
III. Analytic Solver.

A) I only
B) II only
C) III only
D) II and III only
E) I, II, and III
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
67
Note: This question requires access to Solver.
In the following linear programming problem, what is the allowable increase in the right-hand side of the first constraint?
 Maximize P=3x+15y subject to 2x+4y125x+2y10 and x0,y0\begin{array} { l l } \text { Maximize } P = 3 x + 15 y \\\text { subject to } & 2 x + 4 y \leq 12 \\& 5 x + 2 y \leq 10 \\\text { and } \quad x \geq 0 , y \geq 0\end{array}

A) 8
B) 10
C) 12
D) 15
E) ? (infinity)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
68
Activity 1 has an objective function coefficient allowable increase of 30. Activity 2 has an objective function coefficient allowable increase of 60. If both activities objective function coefficient increases by 20, what will happen to the final values in the optimal solution?

A) The optimal solution remains the same.
B) The optimal solution may or may not remain the same.
C) The optimal solution will change.
D) The shadow prices are valid.
E) None of the choices is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
69
Note: This question requires access to Solver.
In the following linear programming problem, how much would the firm be willing to pay for an additional 5 units of Resource A?
Maximize P=3x+15yP = 3 x + 15 y
subject to 2x+4y12\quad 2 x + 4 y \leq 12 (Resource A)
5x+2y105 x + 2 y \leq 10 (Resource B)
and x0,y0\quad x \geq 0 , y \geq 0 .

A) It is impossible to determine.
B) 7.50
C) 11.25
D) 15
E) 18.75

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
70
In robust optimization, what is meant by the term "soft constraint"?

A) A constraint that is not violated.
B) A constraint that has a shadow price of zero.
C) A constraint that can be violated slightly without serious repercussions.
D) A constraint that can be violated dramatically without serious repercussions.
E) A constraint that cannot be violated.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
71
In robust optimization, what is meant by the term "hard constraint"?

A) A constraint that is not violated.
B) A constraint that has a shadow price of zero.
C) A constraint that can be violated slightly without serious repercussions.
D) A constraint that can be violated dramatically without serious repercussions.
E) A constraint that cannot be violated.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
72
The Solver report that shows the allowable ranges for objective function coefficients, allowable ranges for constraint right-hand sides, and shadow prices is called the

A) Range report.
B) Sensitivity report.
C) Parameter report.
D) Solution report.
E) Answer report.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
73
Note: This question requires access to Solver.
In the following linear programming problem, how much would the firm be willing to pay for an additional 5 units of Resource B?
Maximize P=3x+15yP = 3 x + 15 y
subject to 2x+4y12\quad 2 x + 4 y \leq 12 (Resource A)
5x+2y105 x + 2 y \leq 10 (Resource B)
and x0,y0\quad x \geq 0 , y \geq 0 .

A) Nothing
B) 11.25
C) 15
D) 18.75
E) It is impossible to determine.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
74
When conducting robust optimization
I) The right-hand side of each ≤ constraint should be replaced with the minimum value.
II) The right-hand side of each ≤ constraint should be replaced with the maximum value.
III) The right-hand side of each ≥ constraint should be replaced with the maximum value.

A) I only
B) II only
C) III only
D) I and III only
E) II and III only
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
75
A chance constraint
I) Replaces the right-hand side with the minimum value.
II) Allows the objective function coefficients to be replaced with random numbers.
III) Ensures that the chance constraint will never be violated.
IV) Can be used to model a soft constraint which can be violated at times.

A) I only
B) II only
C) III only
D) IV only
E) I and II only
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 75 في هذه المجموعة.