Services
Discover
Question 180
Find limh→0f(x+h) −f(x) h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }limh→0hf(x+h) −f(x) . f(x) =x2−7xf ( x ) = x ^ { 2 } - 7 xf(x) =x2−7x
A) limh→0f(x+h) −f(x) h=2x−9\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2 x - 9limh→0hf(x+h) −f(x) =2x−9 B) limh→0f(x+h) −f(x) h=2x−7\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2 x - 7limh→0hf(x+h) −f(x) =2x−7 C) limh→0f(x+h) −f(x) h=2x+7\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2 x + 7limh→0hf(x+h) −f(x) =2x+7 D) limh→0f(x+h) −f(x) h=−(2x−7) \lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - ( 2 x - 7 ) limh→0hf(x+h) −f(x) =−(2x−7) E) limh→0f(x+h) −f(x) h=2x+6\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2 x + 6limh→0hf(x+h) −f(x) =2x+6
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q175: Find the limit
Q176: Find Q177: Algebraically evaluate the limit (if itQ178: Find Q179: Algebraically evaluate the limit (if itQ181: Determine Q182: Find the limit (if it exists).RoundQ183: Use the graph to determine Q184: Graphically approximate the limit (if itQ185: Graphically approximate the limit (if itUnlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q177: Algebraically evaluate the limit (if it
Q178: Find Q179: Algebraically evaluate the limit (if itQ181: Determine Q182: Find the limit (if it exists).RoundQ183: Use the graph to determine Q184: Graphically approximate the limit (if itQ185: Graphically approximate the limit (if it
Q179: Algebraically evaluate the limit (if it
Q181: Determine Q182: Find the limit (if it exists).RoundQ183: Use the graph to determine Q184: Graphically approximate the limit (if itQ185: Graphically approximate the limit (if it
Q182: Find the limit (if it exists).Round
Q183: Use the graph to determine
Q184: Graphically approximate the limit (if it
Q185: Graphically approximate the limit (if it
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents