Solved

Let a=a1i+α2i+α3i\vec { a } = a _ { 1 } \vec { i } + \alpha _ { 2 } \vec { i } + \alpha _ { 3 } \vec { i }

Question 18

Multiple Choice

Let a=a1i+α2i+α3i\vec { a } = a _ { 1 } \vec { i } + \alpha _ { 2 } \vec { i } + \alpha _ { 3 } \vec { i } be a constant vector and f(x, y, z) be a smooth function.Which statement is true?


A) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is parallel to
α\vec { \alpha }
B) If divfa\operatorname { div } f \vec { a } is not a divergence free vector field then \nabla f is perpendicular to
α\vec { \alpha }
C) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is perpendicular to
α\vec { \alpha }
D) If divfa\operatorname { div } f \vec { a } is not a divergence free vector field then \nabla f is parallel to
α\vec { \alpha }
E) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is constant.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents