Solved

Let a=α1i+α2j+α3k\vec { a } = \alpha _ { 1 } \vec { i } + \alpha _ { 2 } \vec { j } + \alpha _ { 3 } \vec { k }

Question 75

Multiple Choice

Let a=α1i+α2j+α3k\vec { a } = \alpha _ { 1 } \vec { i } + \alpha _ { 2 } \vec { j } + \alpha _ { 3 } \vec { k } be a nonzero constant vector and let r=xi+yj+zk\vec { r } = x \vec { i } + y \vec { j } + z \vec { k } .Suppose S is the sphere of radius one centered at the origin.There are two (related) reasons why S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 .Select them both.


A) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because a×r=0\vec { a } \times \vec { r } = \overrightarrow { 0 } .
B) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because div(a×r) =0\operatorname { div } ( \vec { a } \times \vec { r } ) = 0 .
C) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because r\vec { r } is parallel to the
dAd \vec { A } element everywhere on S and so
a×r\vec { a } \times \vec { r } is perpendicular to
dAd \vec { A } on S.
D) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because a×r\vec { a } \times \vec { r } is a constant vector field.
E) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because H(a×r) dA=Q>0\int _ { H } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = Q > 0 and
L(a×r) dA=Q\int _ { L } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = - Q , where H is the upper unit hemisphere and L is the lower unit hemisphere.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents