Solved

Set Up the Three-Dimensional Integral RydV\int _ { R } y d V

Question 26

Multiple Choice

Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  Set up the three-dimensional integral  \int _ { R } y d V  where R is the  ice-cream cone  enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.   A)   \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)   \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)   \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x


A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents