Solved

The Given Set Is a Basis for a Subspace W x1=[630],x2=[6183]x _ { 1 } = \left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , x _ { 2 } = \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]

Question 29

Multiple Choice

The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
-Let x1=[630],x2=[6183]x _ { 1 } = \left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , x _ { 2 } = \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]


A)
[630],[18243]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } 18 \\ - 24 \\ 3 \end{array} \right]

B)
[630],[6183]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } - 6 \\ - 18 \\ - 3 \end{array} \right]

C)
[930],[6183]\left[ \begin{array} { r } - 9 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]

D)

[630],[6123]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } - 6 \\ - 12 \\ 3 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents