Solve the problem. -Let C[0,π] have the inner product ⟨f,g⟩=∫0πf(t) g(t) dt , and let m and n be unequal positive integers. Prove that cos(mt) and cos(nt) are orthogonal.
A) ⟨cos(mt) ,cos(nt) ⟩=∫0πcos(mt) cos(nt) dt =21∫0π[cos(mt+nt) +cos(mt−nt) ]dt=21[m−nsin(mt+nt) +m+nsin(mt−nt) ] from [0,π]=1. B) ⟨cos(mt) ,cos(nt) ⟩=∫0πcos(mt) cos(nt) dt=∫0π[cos(mt+nt) +cos(mt−nt) ]dt=[m+nsin(mt−nt) +m−nsin(mt+nt) ] from [0,π]=1. C) ⟨cos(mt) ,cos(nt) ⟩=∫0πcos(mt) cos(nt) dt=21∫0π[cos(mt+nt) +cos(mt−nt) ]dt=21[m+nsin(mt+nt) +m−nsin(mt−nt) ] from [0,π]=0. D) ⟨cos(mt) ,cos(nt) ⟩=∫0πcos(mt) cos(nt) dt=21∫0π[cos(mt+nt) −cos(mt−nt) ]dt=21[m−nsin(mt+nt) −m+nsin(mt−nt) ] from [0,π]
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge