Solved

Solve the Problem , And b=[112]\mathbf { b } = \left[ \begin{array} { r } - 1 \\ 1 \\ 2 \end{array} \right]

Question 51

Multiple Choice

Solve the problem.
-Let a1=[123],a2=[341],a3=[216]\mathbf { a } _ { \mathbf { 1 } } = \left[ \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right] , \mathbf { a } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ - 4 \\ 1 \end{array} \right] , \mathbf { a } _ { 3 } = \left[ \begin{array} { l } 2 \\ 1 \\ 6 \end{array} \right] , and b=[112]\mathbf { b } = \left[ \begin{array} { r } - 1 \\ 1 \\ 2 \end{array} \right] .
Determine whether b\mathbf { b } can be written as a linear combination of a1,a2\mathbf { a } _ { \mathbf { 1 } } , \mathbf { a } _ { \mathbf { 2 } } , and a3\mathbf { a } _ { 3 } . In other words, determine whether weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } exist, such that x1a1+x2a2+x3a3=bx _ { 1 } a _ { 1 } + x _ { 2 } a _ { 2 } + x _ { 3 } a _ { 3 } = b . Determine the weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } if possible.


A) x1=2,x2=1,x3=0x _ { 1 } = 2 , x _ { 2 } = 1 , x _ { 3 } = 0
B) x1=3,x2=0,x3=1x _ { 1 } = - 3 , x _ { 2 } = 0 , x _ { 3 } = 1
C) No solution
D) x1=2,x2=1,x3=1x _ { 1 } = - 2 , x _ { 2 } = - 1 , x _ { 3 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents