Solved

(Requires Appendix Material) Consider the Following Population Regression Function Model Y^i=β^0+β^1X1i+β^2X2i\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i }

Question 52

Essay

(Requires Appendix material) Consider the following population regression function model with two explanatory variables: Y^i=β^0+β^1X1i+β^2X2i\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i }
It is easy but tedious to
show that SE(β2^)\operatorname { SE } \left( \widehat { \beta _ { 2 } } \right) is given by the following formula: σβ1^2=1n[11ρx1,x22]σu2σX12\sigma _ { \widehat { \beta _ { 1 } } } ^ { 2 } = \frac { 1 } { n } \left[ \frac { 1 } { 1 - \rho _ { x _ { 1 } , x _ { 2 } } ^ { 2 } } \right] \frac { \sigma _ { u } ^ { 2 } } { \sigma _ { X _ { 1 } } ^ { 2 } } Sketch how
SE(β2^)\operatorname { SE } \left( \widehat { \beta _ { 2 } } \right) increases with the correlation between X1i and X2iX _ { 1 i } \text { and } X _ { 2 i } \text {. }

Correct Answer:

verifed

Verified

The answer...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents