Solved

Consider the Sample Regression Function Y^i=β^0+β^1Xi\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { i }

Question 48

Essay

Consider the sample regression function Y^i=β^0+β^1Xi\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { i }
The table below lists estimates for the slope (β^1)\left( \widehat { \beta } _ { 1 } \right) and the variance of the slope estimator (σ^β^12)\left( \widehat { \sigma } _ { \widehat { \beta } _ { 1 } } ^ { 2 } \right) In each case calculate the p -value for the null hypothesis of β1=0\beta _ { 1 } = 0 and a two-tailed alternative hypothesis. Indicate in which case you would reject the null hypothesis at the 5 % significance level.
β^11.760.00252.850.00014σ^β^120.370.000003117.50.0000013\begin{array} { | c | c | c | c | c | } \hline \widehat { \beta } _ { 1 } & - 1.76 & 0.0025 & 2.85 & - 0.00014 \\\hline \hat { \sigma } _ { \widehat { \beta } _ { 1 } } ^ { 2 } & 0.37 & 0.000003 & 117.5 & 0.0000013 \\\hline\end{array}

Correct Answer:

verifed

Verified

The t-statistics are -2.89, 1....

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents