Solved

Find a Formula for the Riemann Sum Obtained by Dividing ck\mathrm { c } _ { \mathrm { k } }

Question 79

Multiple Choice

Find a formula for the Riemann sum obtained by dividing the interval [a, b] into n equal subintervals and using the right-hand endpoint for each ck\mathrm { c } _ { \mathrm { k } } . Then take a limit of these sums as n\mathrm { n } \rightarrow \infty to calculate the area under the curve over [a, b].
- f(x) =5x2+4f ( x ) = 5 x ^ { 2 } + 4 over the interval [0,3][ 0,3 ] .


A) 12+270n3+405n2+135n6n412 + \frac { 270 n ^ { 3 } + 405 n ^ { 2 } + 135 n } { 6 n ^ { 4 } } ; Area =12= 12
B) 12+270n3+405n2+135n6n3;12 + \frac { 270 n ^ { 3 } + 405 n ^ { 2 } + 135 n } { 6 n ^ { 3 } } ; Area =45= 45
C) 12+270n3+405n2+135n6n4;12 + \frac { 270 n ^ { 3 } + 405 n ^ { 2 } + 135 n } { 6 n ^ { 4 } } ; Area =57= 57
D) 12+270n3+405n2+135n6n3;12 + \frac { 270 n ^ { 3 } + 405 n ^ { 2 } + 135 n } { 6 n ^ { 3 } } ; Area =57= 57

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents