Solved

Find the Absolute Extreme Values of the Function on the Interval

Question 29

Multiple Choice

Find the absolute extreme values of the function on the interval.
- f(x) =tanx,π6xπ6f ( x ) = \tan x , - \frac { \pi } { 6 } \leq x \leq \frac { \pi } { 6 }


A) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } and π6- \frac { \pi } { 6 } ; absolute minimum does not exist
B) absolute maximum is 33- \frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = - \frac { \pi } { 6 }
C) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=2π18x = \frac { 2 \pi } { 18 } ; absolute minimum is 33- \frac { \sqrt { 3 } } { 3 } at x=π12x = - \frac { \pi } { 12 }
D) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 33- \frac { \sqrt { 3 } } { 3 } at x=π6x = - \frac { \pi } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents