Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by The

Question 304

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the xyx y -plane, on the side by the cylinder r=3cosθr = 3 \cos \theta , and on top by the paraboloid z=8r2\mathrm { z } = 8 \mathrm { r } ^ { 2 } . Set up the triple integral in cylindrical coordinates that gives the volume of D\mathrm { D } using the order of integration dzdrdθ\mathrm { dz } \mathrm { dr } \mathrm { d } \theta .


A) 02π03cosθ08r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
B) 0π/403cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
C) 0π03cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
D) 0π/203cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents