Solved

Solve the Problem ϱ=9\varrho = 9 In Spherical Coordinates 02π0π09 dddφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \mathrm {~d} d \operatorname { d } \varphi \mathrm { d } \theta

Question 353

Multiple Choice

Solve the problem.
-Set up the triple integral for the volume of the sphere ϱ=9\varrho = 9 in spherical coordinates.


A) 02π0π09 dddφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \mathrm {~d} d \operatorname { d } \varphi \mathrm { d } \theta
B) 02π0π/209ϱ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta
C) 02π0π09ϱ2sinφdρdφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { d } \rho \mathrm { d } \varphi \mathrm { d } \theta
D) 02π0π/209dedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 } \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents