Solved

Solve the Problem x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49

Question 380

Multiple Choice

Solve the problem.
-Find the centroid of the region bounded above by the sphere x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 and below by the plane z=2z = 2 if the density is constant.


A) xˉ=0,yˉ=0,zˉ=36364\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 363 } { 64 }
B) xˉ=0,yˉ=0,zˉ=24380\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 243 } { 80 }
C) xˉ=0,yˉ=0,zˉ=24364\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 243 } { 64 }
D) xˉ=0,yˉ=0,zˉ=12\bar { x } = 0 , \bar { y } = 0 , \bar { z } = 12

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents