Solved

Solve the Problem B) C) D)

Question 42

Multiple Choice

Solve the problem.
-At time t = 0 a particle is located at the point (4, -3, 2) . It travels in a straight line to the point (6, -2, 1) , has speed 2 at (4, -3, 2) and constant acceleration 6i - j - k. Find an equation for the position vector r(t) of the particle at time t.


A) r(t) =(3t2+829t+4) i(12t2+629t+3) j(12t2429t2) kr ( t ) = \left( 3 t ^ { 2 } + \frac { 8 } { \sqrt { 29 } } t + 4 \right) i - \left( \frac { 1 } { 2 } t ^ { 2 } + \frac { 6 } { \sqrt { 29 } } t + 3 \right) j - \left( \frac { 1 } { 2 } t ^ { 2 } - \frac { 4 } { \sqrt { 29 } } t - 2 \right) k
B) r(t) =(3t2+26t+4) i(12t216t+3) j(12t2+16t2) kr ( t ) = \left( 3 t ^ { 2 } + \frac { 2 } { \sqrt { 6 } } t + 4 \right) i - \left( \frac { 1 } { 2 } t ^ { 2 } - \frac { 1 } { \sqrt { 6 } } t + 3 \right) j - \left( \frac { 1 } { 2 } t ^ { 2 } + \frac { 1 } { \sqrt { 6 } } t - 2 \right) k
C) r(t) =(3t2+46t+4) i(12t226t+3) j(12t2+26t2) k\mathbf { r } ( \mathrm { t } ) = \left( 3 \mathrm { t } ^ { 2 } + \frac { 4 } { \sqrt { 6 } } \mathrm { t } + 4 \right) \mathrm { i } - \left( \frac { 1 } { 2 } \mathrm { t } ^ { 2 } - \frac { 2 } { \sqrt { 6 } } \mathrm { t } + 3 \right) \mathrm { j } - \left( \frac { 1 } { 2 } \mathrm { t } ^ { 2 } + \frac { 2 } { \sqrt { 6 } } \mathrm { t } - 2 \right) \mathrm { k }
D) r(t) ={6t2+46t+4) i(t226t+3) j(t2+26t2) k\mathbf { r } ( \mathrm { t } ) = \left\{ 6 \mathrm { t } ^ { 2 } + \frac { 4 } { \sqrt { 6 } } \mathrm { t } + 4 \right) \mathrm { i } - \left( \mathrm { t } ^ { 2 } - \frac { 2 } { \sqrt { 6 } } \mathrm { t } + 3 \right) \mathrm { j } - \left( \mathrm { t } ^ { 2 } + \frac { 2 } { \sqrt { 6 } } \mathrm { t } - 2 \right) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents