Solved

Provide an Appropriate Response By Solving the Following Initial Value Problem for a Vector

Question 79

Essay

Provide an appropriate response.
-Derive the equations
x=x0+v0k(1ekt)cosαy=y0+v0k(1ekt)sinα+gk2(1ktekt)\begin{array} { l } x = x _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \cos \alpha \\y = y _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \sin \alpha + \frac { g } { k ^ { 2 } } \left( 1 - k t - e ^ { - k t } \right)\end{array}
by solving the following initial value problem for a vector r\mathbf { r } in the plane.
 Differential equation d2rdt2=gjkv=gjkdrdt Initial conditions: r(0)=x0i+y0jdrdt(0)=v0=(v0cosα)i+(v0sinα)j\begin{aligned}\text { Differential equation } \frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } & = - g \mathbf { j } - \mathrm { k } \mathbf { v } = - \mathrm { g } \mathbf { j } - \mathrm { k } \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } \\\text { Initial conditions: } \quad \mathrm { r } ( 0 ) & = \mathrm { x } _ { 0 } \mathbf { i } + \mathrm { y } _ { 0 } \mathbf { j } \\& \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } ( 0 ) = \mathbf { v } _ { 0 } = \left( \mathrm { v } _ { 0 } \cos \alpha \right) \mathbf { i } + \left( \mathrm { v } _ { 0 } \sin \alpha \right) \mathbf { j }\end{aligned}
The drag coefficient k\mathrm { k } is a positive constant representing resistance due to air density, vo and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleration of gravity.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents