Solved

Parametric Equations and And a Parameter Interval for the Motion x=2sint,y=5cost,0t2πx=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi

Question 9

Multiple Choice

Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph
traced by the particle and the direction of motion.
- x=2sint,y=5cost,0t2πx=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation


A) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from (2,0) ( 2,0 ) to (2,0) ( 2,0 ) one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

B) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from , (5,0) ( 5,0 ) to (5,0) ( 5,0 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation
C) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from (0,2) ( 0,2 ) to (0,2) ( 0,2 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from (0,5) ( 0,5 ) to (0,5) ( 0,5 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents