Services
Discover
Question 29
Find the indefinite integral. ∫cos45xdx\int \cos ^ { 4 } 5 x d x∫cos45xdx
A) 60x+8sin(10) x+sin(15) x160+C\frac { 60 x + 8 \sin ( 10 ) x + \sin ( 15 ) x } { 160 } + C16060x+8sin(10) x+sin(15) x+C B) 60x+8sin(5) x+sin(20) x160+C\frac { 60 x + 8 \sin ( 5 ) x + \sin ( 20 ) x } { 160 } + C16060x+8sin(5) x+sin(20) x+C C) 20x+4sin(10) x+sin(15) x160+C\frac { 20 x + 4 \sin ( 10 ) x + \sin ( 15 ) x } { 160 } + C16020x+4sin(10) x+sin(15) x+C D) 60x+8sin(10) x+sin(20) x160+C\frac { 60 x + 8 \sin ( 10 ) x + \sin ( 20 ) x } { 160 } + C16060x+8sin(10) x+sin(20) x+C E) 20x+8sin(10) x+sin(20) x160+C\frac { 20 x + 8 \sin ( 10 ) x + \sin ( 20 ) x } { 160 } + C16020x+8sin(10) x+sin(20) x+C
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q24: Find the indefinite integral.
Q25: Find the indefinite integral.
Q26: Q27: Q28: Find the indefinite integral. Q30: Find the indefinite integral. Q31: Find the indefinite integral. Q32: Suppose a model for the abilityQ33: Find the indefinite integral. Q34: Find the definite integral.
Q27: Q28: Find the indefinite integral. Q30: Find the indefinite integral. Q31: Find the indefinite integral. Q32: Suppose a model for the abilityQ33: Find the indefinite integral. Q34: Find the definite integral.
Q28: Find the indefinite integral.
Q30: Find the indefinite integral.
Q31: Find the indefinite integral.
Q32: Suppose a model for the ability
Q33: Find the indefinite integral.
Q34: Find the definite integral.
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents