Solved

Find the Absolute Extreme Values of the Function on the Interval

Question 38

Multiple Choice

Find the absolute extreme values of the function on the interval.
- f(x) =tanx,π4xπ6f ( x ) = \tan x , - \frac { \pi } { 4 } \leq x \leq \frac { \pi } { 6 }


A) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 1- 1 at x=π4x = - \frac { \pi } { 4 }
B) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=2π18x = \frac { 2 \pi } { 18 } ; absolute minimum is 1- 1 at x=π8x = - \frac { \pi } { 8 }
C) absolute maximum is 1- 1 at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 33\frac { \sqrt { 3 } } { 3 } at x=π4x = - \frac { \pi } { 4 }
D) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } and π4- \frac { \pi } { 4 } ; absolute minimum does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents