Solved

Graph the Function, Then Find the Extreme Values of the Function

Question 77

Multiple Choice

Graph the function, then find the extreme values of the function on the interval and indicate where they occur.
-y = x1\mid{x - 1}\mid - x6\mid{ x - 6}\mid on the interval -2 < x < 7


A)
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -y =  \mid{x - 1}\mid  - \mid{ x - 6}\mid  on the interval -2 < x < 7  A)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,2 ]  B)    Absolute maximum is:  - 5  on the interval  [ 6,7 )  ; absolute minimum is: 5 on the interval  ( - 2,1 ]   C)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 5  on the interval  ( - 2,1 ]   D)    Absolute maximum is: 6 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,1 ]
Absolute maximum is: 5 on the interval [6,7) [ 6,7 ) ; absolute minimum is: 4- 4 on the interval (2,2]( - 2,2 ]
B)
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -y =  \mid{x - 1}\mid  - \mid{ x - 6}\mid  on the interval -2 < x < 7  A)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,2 ]  B)    Absolute maximum is:  - 5  on the interval  [ 6,7 )  ; absolute minimum is: 5 on the interval  ( - 2,1 ]   C)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 5  on the interval  ( - 2,1 ]   D)    Absolute maximum is: 6 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,1 ]
Absolute maximum is: 5- 5 on the interval [6,7) [ 6,7 ) ; absolute minimum is: 5 on the interval (2,1]( - 2,1 ]

C)
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -y =  \mid{x - 1}\mid  - \mid{ x - 6}\mid  on the interval -2 < x < 7  A)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,2 ]  B)    Absolute maximum is:  - 5  on the interval  [ 6,7 )  ; absolute minimum is: 5 on the interval  ( - 2,1 ]   C)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 5  on the interval  ( - 2,1 ]   D)    Absolute maximum is: 6 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,1 ]
Absolute maximum is: 5 on the interval [6,7) [ 6,7 ) ; absolute minimum is: 5- 5 on the interval (2,1]( - 2,1 ]
D)
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -y =  \mid{x - 1}\mid  - \mid{ x - 6}\mid  on the interval -2 < x < 7  A)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,2 ]  B)    Absolute maximum is:  - 5  on the interval  [ 6,7 )  ; absolute minimum is: 5 on the interval  ( - 2,1 ]   C)    Absolute maximum is: 5 on the interval  [ 6,7 )  ; absolute minimum is:  - 5  on the interval  ( - 2,1 ]   D)    Absolute maximum is: 6 on the interval  [ 6,7 )  ; absolute minimum is:  - 4  on the interval  ( - 2,1 ]
Absolute maximum is: 6 on the interval [6,7) [ 6,7 ) ; absolute minimum is: 4- 4 on the interval (2,1]( - 2,1 ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents