Services
Discover
Question 56
Use a table of integrals to evaluate the integral. ∫x2+2xdx\int x \sqrt { 2 + 2 x } d x∫x2+2xdx
A) 2215(2x−1) (x+1) 3/2+C\frac { 2 \sqrt { 2 } } { 15 } ( 2 x - 1 ) ( x + 1 ) ^ { 3 / 2 } + C1522(2x−1) (x+1) 3/2+C B) 2215(3x−2) (x+1) 3/2+C\frac { 2 \sqrt { 2 } } { 15 } ( 3 x - 2 ) ( x + 1 ) ^ { 3 / 2 } + C1522(3x−2) (x+1) 3/2+C C) 215(3x−2) x+1+C\frac { 2 } { 15 } ( 3 x - 2 ) \sqrt { x + 1 } + C152(3x−2) x+1+C D) 2215(3x−2) x+1+C\frac { 2 \sqrt { 2 } } { 15 } ( 3 x - 2 ) \sqrt { x + 1 } + C1522(3x−2) x+1+C
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q51: Use a table of integrals to
Q52: Use long division to evaluate the
Q53: Find the integral. Q54: Evaluate the integral. Q55: Use long division to evaluate theQ57: Use a table of integrals toQ58: A particle moves on a straightQ59: Find the average value of theQ60: Determine whether the improper integral convergesQ61: Use long division to evaluate the
Q54: Evaluate the integral. Q55: Use long division to evaluate theQ57: Use a table of integrals toQ58: A particle moves on a straightQ59: Find the average value of theQ60: Determine whether the improper integral convergesQ61: Use long division to evaluate the
Q55: Use long division to evaluate the
Q57: Use a table of integrals to
Q58: A particle moves on a straight
Q59: Find the average value of the
Q60: Determine whether the improper integral converges
Q61: Use long division to evaluate the
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents