Solved

Into Which of the Following Systems Can This Homogeneous Third-Order x1=x2,x2=x3,x3=10x32x28x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}

Question 2

Multiple Choice

Into which of the following systems can this homogeneous third-order differential equation be transformed?
 Into which of the following systems can this homogeneous third-order differential equation be transformed?   A)    x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}   B)    x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}   C)    x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}   D)    x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}


A) x1=x2,x2=x3,x3=10x32x28x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}
B) x1=x2,x2=x3,x3=105tx3+25t2x2+85t3x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}
C) x1=x2,x2=x3,x3=10x3+2x2+8x1 x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}
D) x1=x2,x2=x3,x3=105tx325t2x285t3x1 x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents