Solved

Consider the First-Order Nonhomogeneous Initial Value Problem

Given a Fundamental

Question 94

Multiple Choice

Consider the first-order nonhomogeneous initial value problem
 Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \quad \mathbf{x}(t) =\psi(t)  \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   B)    \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   C)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   D)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2)  \int_{2.2}^{t} \psi^{-1}(s) =-10
Given a fundamental matrix  Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \quad \mathbf{x}(t) =\psi(t)  \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   B)    \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   C)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   D)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2)  \int_{2.2}^{t} \psi^{-1}(s) =-10 (t) for the system, what is the solution of this initial value problem?


A) x(t) =ψ(t) ψ1(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \quad \mathbf{x}(t) =\psi(t) \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
B) x(t) =ψ(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
C) x(t) =ψ1(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
D) x(t) =ψ1(2.2) (24) +ψ(2.2) 2.2tψ1(s) =10 \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2) \int_{2.2}^{t} \psi^{-1}(s) =-10

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents