Solved

Convert the Constraints into Linear Equations by Using Slack Variables z=3x1+5x2z=3 x_{1}+5 x_{2}

Question 82

Multiple Choice

Convert the constraints into linear equations by using slack variables.
-Maximize z=3x1+5x2z=3 x_{1}+5 x_{2}
Subject to: 3x1+3x2303 x_{1}+3 x_{2} \leq 30
x1+4x240x_{1}+4 x_{2} \leq 40
x10,x20x_{1} \geq 0, x_{2} \geq 0


A) 3x1+3x2=s1+303 x_{1}+3 x_{2}=s 1+30
x1+4x2=s2+40\mathrm{x}_{1}+4 \mathrm{x}_{2}=\mathrm{s}_{2}+40
B) 3x1+3x2+s1=303 x_{1}+3 x_{2}+s_{1}=30
x1+4x2+s2=40\mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{s}_{2}=40
C) 3x1+3x2+s1303 x_{1}+3 x_{2}+s_{1} \geq 30
x1+4x2+s240\mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{s}_{2} \geq 40
D) 3x1+3x2+s1303 x_{1}+3 x_{2}+s_{1} \leq 30
x1+4x2+s240\mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{s}_{2} \leq 40

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents