Solved

Consider the Model Y = β0 + β1x + β2d

Question 33

Multiple Choice

Consider the model y = β0 + β1x + β2d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________.


A) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = b0 + b1x + b2x
B) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = b0 + b1x
C) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = (b0 + b1) x + b2
D)
Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = (b0 + b2) + b1x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents