Question 8
Multiple Choice
In the previous three problems, the solution of the original problem is
A) u(x,t) =∑n=1∞cnsin(nπx/L) e−(nπ/L) t , where cn=∫0Lf(x) cos(nπx/L) dx
B) u(x,t) =∑n=0∞cncos(nπx/L) cos(nπt/L) , where c0=∫0Lf(x) dx/L,cn=2∫0Lf(x) cos(nπx/L) dx/L
C) u(x,t) =∑n=1∞cnsin(nπx/L) sin(nπt/L) , where cn=2∫0Lf(x) cos(nπx/L) dx/L
D) u(x,t) =∑n=1∞cnsin(nπx/L) e−nxt/L , where cn=2∫0Lf(x) sin(nπx/L) dx/L
E) u(x,t) =∑n=0∞cncos(nπx/L) e−nxt/L , where cn=∫0Lf(x) cos(nπx/L) dx
Correct Answer:

Verified
Unlock this answer now
Get Access to more Verified Answers free of charge