Solved

In the Previous Three Problems, the Solution of the Original u(x,t)=n=1cnsin(nπx/L)e(nπ/L)tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) t }

Question 8

Multiple Choice

In the previous three problems, the solution of the original problem is


A) u(x,t) =n=1cnsin(nπx/L) e(nπ/L) tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) t } , where cn=0Lf(x) cos(nπx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t) =n=0cncos(nπx/L) cos(nπt/L) u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \cos ( n \pi t /L ) , where c0=0Lf(x) dx/L,cn=20Lf(x) cos(nπx/L) dx/Lc _ { 0 } = \int _ { 0 } ^ { L } f ( x ) d x / L , c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
C) u(x,t) =n=1cnsin(nπx/L) sin(nπt/L) u ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sin ( n \pi t / L ) , where cn=20Lf(x) cos(nπx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t) =n=1cnsin(nπx/L) enxt/Lu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - nxt / L } , where cn=20Lf(x) sin(nπx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t) =n=0cncos(nπx/L) enxt/Lu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - n x t / L } , where cn=0Lf(x) cos(nπx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents