Question 28
Multiple Choice
In the previous three problems, the solution of the original problem is
A) u(x,t) =∑n−1∞cnsin(nπx/L) sinh(nπ(y−H) /L) , where cn=∫0Lf(x) cos(nπx/L) dx/sinh(−nπH/L)
B) u(x,t) =∑n−1∞cnsin(nπx/L) sinh(nπ(y−H) /L) , where cx=2∫0Lf(x) sin(nπx/L) dx/(Lsinh(−nπH/L) )
C) u(x,t) =∑n−1∞cnsin(nπx/L) cosh(nπ(y−H) /L) , where cn=2∫0Lf(x) cos(nπx/L) dx/(Lsinh(−nπH/L) )
D) u(x,t) =∑n−1∞cnsin(nπx/L) cosh((nπ/L) 2(y−H) ) , where cx=2∫0Lf(x) sin(nπx/L) dx/(Lsinh(−nπH/L) )
E) u(x,t) =∑n=0∞cncos(nπx/L) sinh((nπ/L) 2(y−H) ) , where cn=∫0Lf(x) cos(nπx/L) dx/sinh(−nπH/L)
Correct Answer:

Verified
Unlock this answer now
Get Access to more Verified Answers free of charge