Solved

A Power Series Solution About x=0x = 0 Of the Differential Equation

Question 2

Multiple Choice

A power series solution about x=0x = 0 of the differential equation y+y=0y ^ { \prime \prime } + y = 0 is


A) y=c0k=0(1) kx2k/(2k) !+c1k=0(1) kx2k+1/(2k+1) !y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0(1) kx2k/(2k) +c1k=0(1) kx2k+1/(2k+1) y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k=0(1) kx2k/(2k) 2+c1k=0(1) kx2k+1/(2k+1) 2y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0(1) kx2k/(2k) !+c1k=0(1) kx2k1/(2k1) !y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0(1) kx2k/(2k) +c1k=0(1) kx2k1/(2k1) y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 )

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents