expand icon
book The Living World 8th Edition by George Johnson cover

The Living World 8th Edition by George Johnson

النسخة 8الرقم المعياري الدولي: 978-0078024214
book The Living World 8th Edition by George Johnson cover

The Living World 8th Edition by George Johnson

النسخة 8الرقم المعياري الدولي: 978-0078024214
تمرين 3
How Do Llamas Live So High Up?
Because of mixing, the air animals breathe is 21% oxygen everywhere, even way up into the sky 100 km above earth's surface. However, the amount of air (the number of molecules in a unit volume) decreases sharply with altitude, as shown in the upper graph. Air pressure at 5,000 meters is half that at sea level. This lack of air presents a serious problem to humans, as mountain climbers know. The amount of oxygen in the air (measured as oxygen partial pressure) is lower, so there is simply too little oxygen to fuel a climber's muscles. To combat this problem, high-altitude climbers typically spend months acclimating to high altitudes, a period in which their bodies greatly increase the amount of hemoglobin in their red blood cells and so increase the amount of oxygen the red blood cells can capture. Many mammals live their entire lives at high altitudes. The llama and the vicuna (pictured here) both live in the high Andes of South America, often above 5,000 meters. Do they stuff extra hemoglobin into their red blood cells too, or are they able to solve the problem of low oxygen in another way? How Do Llamas Live So High Up?  Because of mixing, the air animals breathe is 21% oxygen everywhere, even way up into the sky 100 km above earth's surface. However, the amount of air (the number of molecules in a unit volume) decreases sharply with altitude, as shown in the upper graph. Air pressure at 5,000 meters is half that at sea level. This lack of air presents a serious problem to humans, as mountain climbers know. The amount of oxygen in the air (measured as oxygen partial pressure) is lower, so there is simply too little oxygen to fuel a climber's muscles. To combat this problem, high-altitude climbers typically spend months acclimating to high altitudes, a period in which their bodies greatly increase the amount of hemoglobin in their red blood cells and so increase the amount of oxygen the red blood cells can capture. Many mammals live their entire lives at high altitudes. The llama and the vicuna (pictured here) both live in the high Andes of South America, often above 5,000 meters. Do they stuff extra hemoglobin into their red blood cells too, or are they able to solve the problem of low oxygen in another way?    The graph on the lower right displays three oxygen loading curves that reveal the effectiveness with which hemoglobin binds oxygen. The more effective the binding, the less oxygen required before hemoglobin becomes fully loaded. In the graph, the percent hemoglobin saturation (that is, how much of the hemoglobin is bound to oxygen) is presented on the y axis, and the oxygen partial pressure (a measure of the amount of oxygen available to the hemoglobin molecules) is presented on the x axis. Oxygenloading curves are presented for three mammalian species: humans living at sea level, and llamas and vicunas, each living in the Andes above 5,000 meters.      Further Analysis What saturation values would you expect in llamas raised from birth in the National Zoo at Washington, D.C.? Why would you expect this? How might you test your prediction?
The graph on the lower right displays three "oxygen loading curves" that reveal the effectiveness with which hemoglobin binds oxygen. The more effective the binding, the less oxygen required before hemoglobin becomes fully loaded. In the graph, the percent hemoglobin saturation (that is, how much of the hemoglobin is bound to oxygen) is presented on the y axis, and the oxygen partial pressure (a measure of the amount of oxygen available to the hemoglobin molecules) is presented on the x axis. Oxygenloading curves are presented for three mammalian species: humans living at sea level, and llamas and vicunas, each living in the Andes above 5,000 meters. How Do Llamas Live So High Up?  Because of mixing, the air animals breathe is 21% oxygen everywhere, even way up into the sky 100 km above earth's surface. However, the amount of air (the number of molecules in a unit volume) decreases sharply with altitude, as shown in the upper graph. Air pressure at 5,000 meters is half that at sea level. This lack of air presents a serious problem to humans, as mountain climbers know. The amount of oxygen in the air (measured as oxygen partial pressure) is lower, so there is simply too little oxygen to fuel a climber's muscles. To combat this problem, high-altitude climbers typically spend months acclimating to high altitudes, a period in which their bodies greatly increase the amount of hemoglobin in their red blood cells and so increase the amount of oxygen the red blood cells can capture. Many mammals live their entire lives at high altitudes. The llama and the vicuna (pictured here) both live in the high Andes of South America, often above 5,000 meters. Do they stuff extra hemoglobin into their red blood cells too, or are they able to solve the problem of low oxygen in another way?    The graph on the lower right displays three oxygen loading curves that reveal the effectiveness with which hemoglobin binds oxygen. The more effective the binding, the less oxygen required before hemoglobin becomes fully loaded. In the graph, the percent hemoglobin saturation (that is, how much of the hemoglobin is bound to oxygen) is presented on the y axis, and the oxygen partial pressure (a measure of the amount of oxygen available to the hemoglobin molecules) is presented on the x axis. Oxygenloading curves are presented for three mammalian species: humans living at sea level, and llamas and vicunas, each living in the Andes above 5,000 meters.      Further Analysis What saturation values would you expect in llamas raised from birth in the National Zoo at Washington, D.C.? Why would you expect this? How might you test your prediction? How Do Llamas Live So High Up?  Because of mixing, the air animals breathe is 21% oxygen everywhere, even way up into the sky 100 km above earth's surface. However, the amount of air (the number of molecules in a unit volume) decreases sharply with altitude, as shown in the upper graph. Air pressure at 5,000 meters is half that at sea level. This lack of air presents a serious problem to humans, as mountain climbers know. The amount of oxygen in the air (measured as oxygen partial pressure) is lower, so there is simply too little oxygen to fuel a climber's muscles. To combat this problem, high-altitude climbers typically spend months acclimating to high altitudes, a period in which their bodies greatly increase the amount of hemoglobin in their red blood cells and so increase the amount of oxygen the red blood cells can capture. Many mammals live their entire lives at high altitudes. The llama and the vicuna (pictured here) both live in the high Andes of South America, often above 5,000 meters. Do they stuff extra hemoglobin into their red blood cells too, or are they able to solve the problem of low oxygen in another way?    The graph on the lower right displays three oxygen loading curves that reveal the effectiveness with which hemoglobin binds oxygen. The more effective the binding, the less oxygen required before hemoglobin becomes fully loaded. In the graph, the percent hemoglobin saturation (that is, how much of the hemoglobin is bound to oxygen) is presented on the y axis, and the oxygen partial pressure (a measure of the amount of oxygen available to the hemoglobin molecules) is presented on the x axis. Oxygenloading curves are presented for three mammalian species: humans living at sea level, and llamas and vicunas, each living in the Andes above 5,000 meters.      Further Analysis What saturation values would you expect in llamas raised from birth in the National Zoo at Washington, D.C.? Why would you expect this? How might you test your prediction?
Further Analysis What saturation values would you expect in llamas raised from birth in the National Zoo at Washington, D.C.? Why would you expect this? How might you test your prediction?
التوضيح
موثّق
like image
like image

Respiration is the necessary process tha...

close menu
The Living World 8th Edition by George Johnson
cross icon