expand icon
book Introduction to Econometrics 3rd Edition by James Stock, James Stock cover

Introduction to Econometrics 3rd Edition by James Stock, James Stock

النسخة 3الرقم المعياري الدولي: 978-9352863501
book Introduction to Econometrics 3rd Edition by James Stock, James Stock cover

Introduction to Econometrics 3rd Edition by James Stock, James Stock

النسخة 3الرقم المعياري الدولي: 978-9352863501
تمرين 13
Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed    Now let   be the binary variable fixed effects estimator computed by estimating Equation (10.11) by OLS and let   be the de-meaning fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for   given above to prove that   . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.]
Now let Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed    Now let   be the binary variable fixed effects estimator computed by estimating Equation (10.11) by OLS and let   be the de-meaning fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for   given above to prove that   . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.] be the "binary variable" fixed effects estimator computed by estimating Equation (10.11) by OLS and let Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed    Now let   be the binary variable fixed effects estimator computed by estimating Equation (10.11) by OLS and let   be the de-meaning fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for   given above to prove that   . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.] be the "de-meaning" fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed    Now let   be the binary variable fixed effects estimator computed by estimating Equation (10.11) by OLS and let   be the de-meaning fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for   given above to prove that   . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.] given above to prove that Consider the regression model in matrix form, Y = X + W + U , where X is an n × k 1 matrix of regressors and W is an n × k 2 matrix of regressors. Then, as shown in Exercise 18.17, the OLS estimator ß can be expressed    Now let   be the binary variable fixed effects estimator computed by estimating Equation (10.11) by OLS and let   be the de-meaning fixed effects estimator computed by estimating Equation (10.14) by OLS, in which the entity-specific sample means have been subtracted from X and Y. Use the expression for   given above to prove that   . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.] . [ Hint : Write Equation (10.11) using a full set of fixed effects, D 1 i , D 2 i , …, Dn i and no constant term. Include all of the fixed effects in W. Write out the matrix M W X.]
التوضيح
موثّق
like image
like image

The given regression equation is blured image For a ...

close menu
Introduction to Econometrics 3rd Edition by James Stock, James Stock
cross icon