Deck 15: Functions of Several Variables

Full screen (f)
exit full mode
Question
Find the volume of the tetrahedron with corners at ( 0, 0, 0 ), ( 3, 0, 0 ), ( 0, 10, 0 ) and ( 0, 0, 8 ). ​

A)40
B) 0
C) 80
D) 120
E) 240
Use Space or
up arrow
down arrow
to flip the card.
Question
Compute the integral. 0707(x5y)dx dy\int _ { 0 } ^ { 7 } \int _ { 0 } ^ { 7 } ( x - 5 y ) \mathrm { d } x \mathrm {~d} y

A)-1,372
B) -2
C) -686
D) 172
E) -196
Question
Compute the integral. 09x2x2x dy dx\int _ { 0 } ^ { 9 } \int _ { - x ^ { 2 } } ^ { x ^ { 2 } } x \mathrm {~d} y \mathrm {~d} x

A)3,280.5
B) 9
C) 6,561
D) -40.5
E) 0
Question
Compute the integral. 0305(yexxy)dx dy\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 5 } \left( y e ^ { x } - x - y \right) \mathrm { d } x \mathrm {~d} y

A)-55.5
B) 9e564.59 e ^ { 5 } - 64.5
C) 4.5e519.54.5 e ^ { 5 } - 19.5
D) 4.5e3+55.54.5 e ^ { - 3 } + 55.5
E) 4.5e564.54.5 e ^ { 5 } - 64.5
Question
Compute the integral. 0102yx dx dy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 2 - y } x \mathrm {~d} x \mathrm {~d} y

A)19
B) 736\frac { 7 } { 36 }
C) 1
D) 7
E) 76\frac { 7 } { 6 }
Question
Compute the integral. 020xex2 dy dx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x } e ^ { x ^ { 2 } } \mathrm {~d} y \mathrm {~d} x

A) 12\frac { 1 } { 2 }
B) e83\frac { e ^ { 8 } } { 3 }
C) 2e42 e ^ { 4 }
D) 12(e41)\frac { 1 } { 2 } \left( e ^ { 4 } - 1 \right)
E) e4e ^ { 4 }
Question
Write the integral with the order of integration reversed (changing the limits of integration as necessary). 1101+yf(x,y)dx dy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 + y } } f ( x , y ) \mathrm { d } x \mathrm {~d} y

A) 02x11f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { \sqrt { x } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
B) 02x211f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { x ^ { 2 } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
C) 011x21f(x,y)dy dx\int _ { 0 } ^ { 1 } \int _ { 1 } ^ { x ^ { 2 } - 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
D) 10x211f(x,y)dy dx\int _ { - 1 } ^ { 0 } \int _ { x ^ { 2 } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
E) 02x11f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { \sqrt { x - 1 } } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
Question
Compute the integral. 0408ex+y dx dy\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 8 } e ^ { x + y } \mathrm {~d} x \mathrm {~d} y

A) e8e4e ^ { 8 } e ^ { 4 }
B) (e81)(e41)\left( e ^ { 8 } - 1 \right) \left( e ^ { 4 } - 1 \right)
C) e12+12e ^ { 12 } + 12
D) e1212e ^ { 12 } - 12
E) e4(e51)\frac { e ^ { 4 } } { \left( e ^ { 5 } - 1 \right) }
Question
Find the average value of the given function over the indicated domain. f(x,y)=yf ( x , y ) = y  <strong>Find the average value of the given function over the indicated domain.    f ( x , y ) = y       </strong> A)  - 2  B)  \frac { 4 } { 3 }  C)  - \frac { 2 } { 3 }  D) 2 E)  \frac { 2 } { 3 }  <div style=padding-top: 35px>

A) 2- 2
B) 43\frac { 4 } { 3 }
C) 23- \frac { 2 } { 3 }
D) 2
E) 23\frac { 2 } { 3 }
Question
Compute the integral. 0104x25x(x+y)12 dy dx\int _ { 0 } ^ { 10 } \int _ { 4 - x } ^ { 25 - x } ( x + y ) ^ { \frac { 1 } { 2 } } \mathrm {~d} y \mathrm {~d} x

A)60
B) 15
C) -52
D) 780
E) 117
Question
Find Rf(x,y)dxdy\iint _ { R } f ( x , y ) d x d y , where f(x,y)=xf ( x , y ) = x and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)  <strong>Find  \iint _ { R } f ( x , y ) d x d y  , where  f ( x , y ) = x  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)      </strong> A)13 B) 2,197 C)    \frac { 2,197 } { 6 }  D) 113 E)  \frac { 169 } { 6 }  <div style=padding-top: 35px>

A)13
B) 2,197
C) 2,1976\frac { 2,197 } { 6 }
D) 113
E) 1696\frac { 169 } { 6 }
Question
Compute the integral.
105y5y+5ex+y dx dy\int _ { - 10 } ^ { 5 } \int _ { y - 5 } ^ { y + 5 } e ^ { x + y } \mathrm {~d} x \mathrm {~d} y

A) 12(e10e5e5+e15)\frac { 1 } { 2 } \left( e ^ { 10 } - e ^ { 5 } - e ^ { - 5 } + e ^ { - 15 } \right)
B) 12(e15e5e10+e25)\frac { 1 } { 2 } \left( e ^ { 15 } - e ^ { 5 } - e ^ { - 10 } + e ^ { - 25 } \right)
C) (e5e5e15+e10)\left( e ^ { 5 } - e ^ { - 5 } - e ^ { - 15 } + e ^ { - 10 } \right)
D) 14(e10e10+e5e5)\frac { 1 } { 4 } \left( e ^ { 10 } - e ^ { - 10 } + e ^ { 5 } - e ^ { - 5 } \right)
E) 12(e15e5e15+e25)\frac { 1 } { 2 } \left( e ^ { 15 } - e ^ { 5 } - e ^ { - 15 } + e ^ { - 25 } \right)
Question
Your latest CD - ROM drive is expected to sell between q=200,000p2q = 200,000 - p ^ { 2 } and q=230,000p2q = 230,000 - p ^ { 2 }
Units if priced at p. You plan to set the price between $200 and $400. What are the maximum and minimum possible revenues you can make What is the average of all the possible revenues you can make

A)$36,800,000,000, $8,000,000,000, $140,166,667
B) $38,000,000, $16,000,000, $34,500,000
C) $36,800,000,000, $8,000,000,000, $73,500,000
D) $45,960,000, $79,840,000, $3,120,000
E) $92,000,000, $40,000,000, $774,000,000,000,000
Question
The town of West Podunk is shaped like a rectangle 80 miles from west to east and 90 miles from north to south (see the figure). It has a population density of
P(x,y)=e0.1(x+y)P ( x , y ) = e ^ { - 0.1 ( x + y ) }
hundred people per square mile x miles east and y miles north of the southwest corner of town. What is the total population of the town
 The town of West Podunk is shaped like a rectangle 80 miles from west to east and 90 miles from north to south (see the figure). It has a population density of  P ( x , y ) = e ^ { - 0.1 ( x + y ) }  hundred people per square mile x miles east and y miles north of the southwest corner of town. What is the total population of the town    Please enter your answer as a number without the units.<div style=padding-top: 35px>

Please enter your answer as a number without the units.
Question
Find the volume under the graph of z=5x2z = 5 - x ^ { 2 } over the triangle 0x30 \leq x \leq 3 and 0y3x0 \leq y \leq 3 - x .

A)15.75
B) 42
C) 22.5
D) 7.5
E) 29.25
Question
Find Rf(x,y)dx dy\iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y , where f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)  <strong>Find  \iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y  , where  f ( x , y ) = x y ^ { 2 }  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)        f ( y ) = \sqrt { 9 - y ^ { 2 } }   </strong> A)32.4 B) 24.3 C) 16.2 D) 27 E) 259.2 <div style=padding-top: 35px>  f(y)=9y2f ( y ) = \sqrt { 9 - y ^ { 2 } }

A)32.4
B) 24.3
C) 16.2
D) 27
E) 259.2
Question
A productivity model at the Handy Gadget Company is P=13,000x0.1y0.9P = 13,000 x ^ { 0.1 } y ^ { 0.9 }
Where P is the number of gadgets the company turns out per month, x is the number of employees at the company, and y is the monthly operating budget in thousands of dollars. Because the company hires part - time workers, it uses anywhere between 44 and 54 workers each month, and its operating budget varies from $12,000 to $14,000 per month. What is the average of the possible numbers gadgets it can turn out per month (Round the answer to the nearest 1,000 gadgets.)

A)8,000 gadgets
B) 61,000 gadgets
C) 193,000 gadgets
D) 3,000 gadgets
Question
The temperature at the point (x,y)( x , y ) on the square with vertices (0, 0), (0, 1), (1, 0) and (1, 1) is given by T(x,y)=4x2+8y2T ( x , y ) = 4 x ^ { 2 } + 8 y ^ { 2 }
Find the hottest and coldest points on the square.

A)(2, 2), (0, 0)
B) (0, 1), (0, 0)
C) (1, 1), (1, 0)
D) (1, 0), (0, 0)
E) (1, 1), (0, 0)
Question
Find Rf(x,y)dx dy\iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y , where f(x,y)=9+yf ( x , y ) = 9 + y and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)
 <strong>Find  \iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y  , where  f ( x , y ) = 9 + y  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)      f ( y ) = 9 - y ^ { 2 }  </strong> A)243 B) 729 C) 324 D) 972 E) 81 <div style=padding-top: 35px>  f(y)=9y2f ( y ) = 9 - y ^ { 2 }

A)243
B) 729
C) 324
D) 972
E) 81
Question
Find the average value of the given function over the indicated domain. f(x,y)=yf ( x , y ) = y
 <strong>Find the average value of the given function over the indicated domain.    f ( x , y ) = y     </strong> A)0 B) 2 C) 1.3 D) 10 E) 7 <div style=padding-top: 35px>

A)0
B) 2
C) 1.3
D) 10
E) 7
Question
Solve the given problem by using substitution.
Find the minimum value of f(x,y,z)=2x2+2x+y2y+z2z4f ( x , y , z ) = 2 x ^ { 2 } + 2 x + y ^ { 2 } - y + z ^ { 2 } - z - 4 subject to z=2yz = 2 y .

A) fmin=3.775f _ { \min } = - 3.775
B) fmin=3.5f _ { \min } = - 3.5
C) fmin=4f _ { \min } = - 4
D) fmin=4.95f _ { \min } = - 4.95
E) fmin=4.7f _ { \min } = - 4.7
Question
Use Lagrange Multipliers to solve the problem.
Find the maximum value of f(x,y)=3xyf ( x , y ) = 3 x y subject to x2+y2=8x ^ { 2 } + y ^ { 2 } = 8 .

A) fmax=24f _ { \max } = 24
B) fmax=12f _ { \max } = 12
C) fmax=17f _ { \max } = 17
D) fmax=7f _ { \max } = 7
E) fmax=32f _ { \max } = 32
Question
Solve the given problem by using substitution.
Minimize S=xy+25xz+5yzS = x y + 25 x z + 5 y z subject to xyz=1x y z = 1 with x>0x > 0 , y>0y > 0 , z>0z > 0 .

A) Smin=20S _ { \min } = 20
B) Smin=15S _ { \min } = 15
C) Smin=5S _ { \min } = 5
D) Smin=25S _ { \min } = 25
E) Smin=1S _ { \min } = 1
Question
Solve the given problem by using substitution.
Find the minimum value of f(x,y,z)=x2+y2+z24f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 4 subject to y=2xy = 2 x .

A) fmin=5f _ { \min } = - 5
B) fmin=4f _ { \min } = - 4
C) fmin=3f _ { \min } = - 3
D) fmin=2f _ { \min } = - 2
E) fmin=6f _ { \min } = - 6
Question
What point on the surface z is closest to the origin z=x2+y5z = x ^ { 2 } + y - 5
Hint : Minimize the square of the distance from (x,y,z)( x , y , z ) to the origin.

A) (2.5,0,2.5)( 2.5,0 , - 2.5 )
B) (2,12,12)\left( - 2 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right) and (2,12,12)\left( 2 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
C) (0,2.5,2.5)( 0,2.5 , - 2.5 )
D) (0,12,12)\left( 0 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
E) (0,2.5,2.5)( 0,2.5 , - 2.5 ) and (0,2.5,2.5)( 0,2.5,2.5 )
Question
Classify the highlighted value in the table. <strong>Classify the highlighted value in the table.   ​</strong> A)a relative maximum B) a saddle point C) a relative minimum D) none of these <div style=padding-top: 35px>

A)a relative maximum
B) a saddle point
C) a relative minimum
D) none of these
Question
Solve the given problem by using substitution.
Find the maximum value of f(x,y,z)=3x2xy2+yz2+zf ( x , y , z ) = 3 - x ^ { 2 } - x - y ^ { 2 } + y - z ^ { 2 } + z subject to y=3xy = 3 x .

A) fmax=3.225f _ { \max } = 3.225
B) fmax=3f _ { \max } = 3
C) fmax=3.35f _ { \max } = 3.35
D) fmax=2.775f _ { \max } = 2.775
E) fmax=2.45f _ { \max } = 2.45
Question
Locate the critical point of the function. f(x,y)=5x2+2y2+4f ( x , y ) = 5 x ^ { 2 } + 2 y ^ { 2 } + 4

A) (5,2,137)( 5,2,137 )
B) (5,2,4)( 5,2,4 )
C) (0,0,4)( 0,0,4 )
D) (0,4,4)( 0,4,4 )
E) (0,0,0)( 0,0,0 )
Question
Use Lagrange Multipliers to solve the problem.
Find the maximum value of f(x,y)=xyf ( x , y ) = x y subject to x+2y=80x + 2 y = 80 .

A) fmax=800f _ { \max } = 800
B) fmax=40f _ { \max } = 40
C) fmax=400f _ { \max } = 400
D) fmax=2f _ { \max } = 2
E) fmax=10f _ { \max } = 10
Question
At what point on the given surface is the quantity x2+y2+z2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } a minimum (The method of Lagrange multipliers can be used here.) z=(4x2+10x+y2+22)12z = \left( 4 x ^ { 2 } + 10 x + y ^ { 2 } + 22 \right) ^ { \frac { 1 } { 2 } }

A) (1,0,5)( - 1,0,5 )
B) (1,0,4)( 1,0,4 )
C) (1,0,4)( - 1,0,4 )
D) (1,0,6)( - 1,0,6 )
E) (3,0,3)( - 3,0,3 )
Question
Your latest CD - ROM drive is expected to sell between
q=190,000p2q = 190,000 - p ^ { 2 } and q=210,000p2q = 210,000 - p ^ { 2 }
units if priced at p. You plan to set the price between $200 and $300. What are the maximum and minimum possible revenues you can make What is the average of all the possible revenues you can make

Please enter your answer as three numbers, separated by commas.
Question
Find the point on the given plane closest to Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   .<div style=padding-top: 35px> .
Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   .<div style=padding-top: 35px>
NOTE: Please enter your answer in the form Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   .<div style=padding-top: 35px> .
Question
In the table below, classify each highlighted value. ​ <strong>In the table below, classify each highlighted value. ​   ​</strong> A)a saddle point B) a relative maximum C) a relative minimum D) none of these <div style=padding-top: 35px>

A)a saddle point
B) a relative maximum
C) a relative minimum
D) none of these
Question
The temperature at the point The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas.<div style=padding-top: 35px> on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​ The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas.<div style=padding-top: 35px>
Find the hottest and coldest points on the square.

NOTE: Please enter your answers in the form The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas.<div style=padding-top: 35px> , separated by commas.
Question
Use Lagrange Multipliers to solve the given problem.
Find the maximum value of f(x,y)=xyf ( x , y ) = x y subject to 2x+y=602 x + y = 60 .

A) fmax=10f _ { \max } = 10
B) fmax=450f _ { \max } = 450
C) fmax=30f _ { \max } = 30
D) fmax=2f _ { \max } = 2
E) fmax=225f _ { \max } = 225
Question
Solve the given problem by using substitution.
Find the maximum value of f(x,y,z)=8x2y2z2f ( x , y , z ) = 8 - x ^ { 2 } - y ^ { 2 } - z ^ { 2 } subject to z=3yz = 3 y .

A) fmax=8f _ { \max } = 8
B) fmax=9f _ { \max } = 9
C) fmax=3f _ { \max } = 3
D) fmax=10f _ { \max } = 10
E) fmax=7f _ { \max } = 7
Question
Solve the given problem by using substitution.
Minimize S=xy+xz+yzS = x y + x z + y z subject to xyz=5x y z = 5 with x>0x > 0 , y>0y > 0 , z>0z > 0 .

A) Smin=3(523)S _ { \min } = 3 \left( 5 ^ { \frac { 2 } { 3 } } \right)
B) Smin=3(623)S _ { \min } = 3 \left( 6 ^ { \frac { 2 } { 3 } } \right)
C) Smin=3(423)S _ { \min } = 3 \left( 4 ^ { \frac { 2 } { 3 } } \right)
D) Smin=3(513)S _ { \min } = 3 \left( 5 ^ { \frac { 1 } { 3 } } \right)
E) Smin=3(613)S _ { \min } = 3 \left( 6 ^ { \frac { 1 } { 3 } } \right)
Question
Find the point on the given plane closest to (1,1,0)( 1,1,0 ) . 2x2y4z+96=02 x - 2 y - 4 z + 96 = 0

A) (3,5,16)( - 3,5,16 )
B) (7,9,16)( - 7,9,16 )
C) (8,8,4)( - 8,8,4 )
D) (7,9,16)( 7,9,16 )
E) (7,9,4)( - 7,9,4 )
Question
What point on the surface z is closest to the origin
z=x2+y2z = x ^ { 2 } + y - 2
Hint : Minimize the square of the distance from (x,y,z)( x , y , z ) to the origin.

NOTE: Please enter your answer(s) in the form (x,y,z)( x , y , z ) . If there is more than one answer, separate them with commas.
Question
A productivity model at the Handy Gadget Company is
P=15,000x0.1y0.9P = 15,000 x ^ { 0.1 } y ^ { 0.9 }
where P is the number of gadgets the company turns out per month, x is the number of employees at the company, and y is the monthly operating budget in thousands of dollars. Because the company hires part - time workers, it uses anywhere between 43 and 53 workers each month, and its operating budget varies from $13,000 to $17,000 per month. What is the average of the possible numbers gadgets it can turn out per month (Round the answer to the nearest 1,000 gadgets.)

Please enter your answer as a number without the units.
Question
Trans World Airlines (TWA) has a rule for checked baggage, "The total dimensions (length + width + height) may not exceed 57 inches for each bag". What is the volume of the largest volume bag you can check on a TWA flight
Enter your answer as a number without the units.
Question
The US Postal Service (USPS) will accept only packages with length plus girth no more than 120 inches. (See the figure.)  <strong>The US Postal Service (USPS) will accept only packages with length plus girth no more than 120 inches. (See the figure.)     What are the dimensions of the largest volume package the USPS will accept </strong> A)  24 \times 24 \times 24  inches B)  24 \times 24 \times 48  inches C)  20 \times 20 \times 40  inches D)  24 \times 48 \times 48  inches E)  40 \times 40 \times 40  inches <div style=padding-top: 35px>
What are the dimensions of the largest volume package the USPS will accept

A) 24×24×2424 \times 24 \times 24 inches
B) 24×24×4824 \times 24 \times 48 inches
C) 20×20×4020 \times 20 \times 40 inches
D) 24×48×4824 \times 48 \times 48 inches
E) 40×40×4040 \times 40 \times 40 inches
Question
Locate the local minimum of the function. f(x,y)=xy+4x+4yf ( x , y ) = x y + \frac { 4 } { x } + \frac { 4 } { y }

A) (413,413,36423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 64 ^ { \frac { 2 } { 3 } } \right)
B) (413,413,1223)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 12 ^ { \frac { 2 } { 3 } } \right)
C) (413,413,423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 2 } { 3 } } \right)
D) (413,413,3423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 4 ^ { \frac { 2 } { 3 } } \right)
E) (413,413,3413)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 4 ^ { \frac { 1 } { 3 } } \right)
Question
Locate the local maximum of the function. f(x,y)=e(x6+y2)f ( x , y ) = e ^ { - \left( x ^ { 6 } + y ^ { 2 } \right) }

A) (0,0,1)( 0,0,1 )
B) (1,0,1e)\left( 1,0 , \frac { 1 } { e } \right)
C) (0,0,0)( 0,0,0 )
D) (1,0,e)( 1,0 , e )
E) (1,0,1e2)\left( 1,0 , \frac { 1 } { e ^ { 2 } } \right)
Question
Find x and y values of the relative extrema of the function. f(x,y)=x4+8xy2+2y4f ( x , y ) = x ^ { 4 } + 8 x y ^ { 2 } + 2 y ^ { 4 }

A) (0,0,0)( 0,0,0 )
B) (0,2,4)( 0 , - 2 , - 4 )
C) (2,2,16)( - 2 , - 2 , - 16 )
D) (2,2,16)( 2 , - 2 , - 16 )
E) (2,2,16)( - 2,2 , - 16 )
Question
Trans World Airlines (TWA) has a rule for checked baggage, "The total dimensions (length + width + height) may not exceed 66 inches for each bag". What is the volume of the largest volume bag you can check on a TWA flight

A)10,648 in.3
B) 66 in.3
C) 287,496 in.3
D) 132 in.3
E) 22 in.3
Question
Locate the maximum of the function. f(x,y)=e(x2+y2+2x)f ( x , y ) = e ^ { - \left( x ^ { 2 } + y ^ { 2 } + 2 x \right) }

A) (1,0,e1)\left( - 1,0 , e ^ { - 1 } \right)
B) (2,0,e)( 2,0 , e )
C) (1,0,e)( 1,0 , e )
D) (1,0,e)( - 1,0 , e )
E) (2,0,e)( - 2,0 , e )
Question
How many critical points does the following function have f(x,y)=4(y2+x2)f ( x , y ) = 4 - \left( y ^ { 2 } + x ^ { 2 } \right)

A)four
B) one
C) two
D) three
E) none
Question
The cost of controlling emissions at a firm goes up rapidly as the amount of emissions reduced goes up. Here is a possible model. C(x,y)=6,000+100x2+25y2C ( x , y ) = 6,000 + 100 x ^ { 2 } + 25 y ^ { 2 }
Where x is the reduction in sulfur emissions, y is the reduction in lead emissions (in pounds of pollutant per day), and C is the daily cost to the firm (in dollars) of this reduction. Government clean-air subsidies amount to $600 per pound of sulfur and $50 per pound of lead removed. How many pounds of pollutant should the firm remove each day to minimize the net cost (cost minus subsidy)

A)3.5 lb of sulfur and 2 lb of lead
B) 6 lb of sulfur and 1 lb of lead
C) 3 lb of sulfur and 1 lb of lead
D) 1.9 lb of sulfur and 3.5 lb of lead
E) 1 lb of sulfur and 3 lb of lead
Question
Your company manufactures two models of stereo speakers, the Ultra Mini and the Big Stack. Demand for each depends partly on the price of the other. If one is expensive then more people will buy the other. If p1 is the price per pair of the Ultra Mini and p2 is the price of the Big Stack, demand for the Ultra Mini is given by q1(p1,p2)=50,000100p1+10p2q _ { 1 } \left( p _ { 1 } , p _ { 2 } \right) = 50,000 - 100 p _ { 1 } + 10 p _ { 2 }
Where q1 represents the number of pairs of Ultra Minis that will be sold in a year. The demand for the Big Stack is given by
q2(p1,p2)=150,000+10p1100p2q _ { 2 } \left( p _ { 1 } , p _ { 2 } \right) = 150,000 + 10 p _ { 1 } - 100 p _ { 2 }
Find the prices for the Ultra Mini and the Big Stack that will maximize your total revenue.

Round your answer to the nearest dollar.

A)$798 for Ultra Mini and $275 for Big Stack
B) $428 for Ultra Mini and $783 for Big Stack
C) $275 for Ultra Mini and $798 for Big Stack
D) $328 for Ultra Mini and $783 for Big Stack
E) $783 for Ultra Mini and $328 for Big Stack
Question
Locate the saddle point of the function. f(x,y)=x26x+yeyf ( x , y ) = x ^ { 2 } - 6 x + y - e ^ { y }

A) (6,1,10)( 6,1 , - 10 )
B) (6,1,1)( 6,1 , - 1 )
C) (3,0,10)( 3,0 , - 10 )
D) (6,0,10)( 6,0 , - 10 )
E) (3,1,10)( 3,1 , - 10 )
Question
Your company manufactures two models of stereo speakers, the Ultra Mini and the Big Stack. Demand for each depends partly on the price of the other. If one is expensive then more people will buy the other. If p1 is the price per pair of the Ultra Mini and p2 is the price of the Big Stack, demand for the Ultra Mini is given by q1(p1,p2)=200,000100p1+10p2q _ { 1 } \left( p _ { 1 } , p _ { 2 } \right) = 200,000 - 100 p _ { 1 } + 10 p _ { 2 }
Where q1 represents the number of pairs of Ultra Minis that will be sold in a year. The demand for the Big Stack is given by
q2(p1,p2)=150,000+10p1100p2q _ { 2 } \left( p _ { 1 } , p _ { 2 } \right) = 150,000 + 10 p _ { 1 } - 100 p _ { 2 }
Find the prices for the Ultra Mini and the Big Stack that will maximize your total revenue.

Round your answer to the nearest dollar.

A)$874 for Ultra Mini and $1,033 for Big Stack
B) $1,033 for Ultra Mini and $874 for Big Stack
C) $1,186 for Ultra Mini and $859 for Big Stack
D) $1,086 for Ultra Mini and $859 for Big Stack
E) $859 for Ultra Mini and $1,086 for Big Stack
Question
Locate the maximum of the function.
Locate the maximum of the function. ​   ​ Express your answer as an ordered triple. If there is more than one answer, separate them by commas.<div style=padding-top: 35px>
Express your answer as an ordered triple. If there is more than one answer, separate them by commas.
Question
The US Postal Service (USPS) will accept only packages with length plus girth no more than 102 inches. (See the figure.)
 The US Postal Service (USPS) will accept only packages with length plus girth no more than 102 inches. (See the figure.)   What are the dimensions of the largest volume package the USPS will accept  Express your answer as an ordered triple in the form  ( x , y , z )  .<div style=padding-top: 35px>
What are the dimensions of the largest volume package the USPS will accept

Express your answer as an ordered triple in the form (x,y,z)( x , y , z ) .
Question
Locate the local minimum of the function.
Locate the local minimum of the function. ​   ​ Express your answer as an ordered triple.<div style=padding-top: 35px>
Express your answer as an ordered triple.
Question
Let H=fxx(a,b)fyy(a,b)f2xy(a,b)H = f _ { x x } ( a , b ) f _ { y y } ( a , b ) - f ^ { 2 } x y ( a , b )
What condition on H guarantees that f has a relative extremum at the point (a,b)( a , b )
Question
Locate the critical point of the function. f(x,y)=4x26xy2+4yf ( x , y ) = 4 - x ^ { 2 } - 6 x - y ^ { 2 } + 4 y

A) (3,2,17)( 3,2 , - 17 )
B) (3,2,17)( - 3,2,17 )
C) (6,4,4)( 6,4,4 )
D) (6,4,4)( - 6,4,4 )
E) (2,3,17)( 2 , - 3,17 )
Question
Locate the local maximum of the function. f(x,y)=x2y8x24y2f ( x , y ) = x ^ { 2 } y - 8 x ^ { 2 } - 4 y ^ { 2 }

A) (8,4,256)( 8,4 , - 256 )
B) (0,0,0)( 0,0,0 )
C) (8,8,256)( - 8,8 , - 256 )
D) (8,4,0)( - 8 , - 4,0 )
E) (8,8,256)( 8,8 , - 256 )
Question
How many critical points does the function have f(x,y)=2xeyf ( x , y ) = 2 x e ^ { y }

A)three
B) two
C) four
D) one
E) none
Question
The cost of controlling emissions at a firm goes up rapidly as the amount of emissions reduced goes up. Here is a possible model.
C(x,y)=6,000+200x2+75y2C ( x , y ) = 6,000 + 200 x ^ { 2 } + 75 y ^ { 2 }
where x is the reduction in sulfur emissions, y is the reduction in lead emissions (in pounds of pollutant per day), and C is the daily cost to the firm (in dollars) of this reduction. Government clean-air subsidies amount to $300 per pound of sulfur and $50 per pound of lead removed. How many pounds of pollutant should the firm remove each day to minimize the net cost (cost minus subsidy)

Enter your answer as an ordered pair in the form (x,y)( x , y ) . Round your answer to three decimal places if necessary.
Question
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ a relative minimum</strong> A)R B)P C)Q <div style=padding-top: 35px>
Choose the correct letter for each question.

a relative minimum

A)R
B)P
C)Q
Question
Calculate 2fy2\frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } , 2fxy\frac { \partial ^ { 2 } f } { \partial x y } and evaluate each at (5,7)( 5,7 ) . f(x,y)=95016x+14y+6xyf ( x , y ) = 950 - 16 x + 14 y + 6 x y

A) 2fy2(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 6 , 2fxy(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 0
B) 2fy2(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 0 , 2fxy(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 0
C) 2fy2(5,7)=16\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 16 , 2fxy{5,7)=14\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { \{ 5,7 ) } = 14
D) 2fy2(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 6 , 2fxy(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 6
E) 2fy2(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 0 , 2fxy(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 6
Question
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.    -relative maximum</strong> A)2 B)8 C)9 D)12 <div style=padding-top: 35px>

-relative maximum

A)2
B)8
C)9
D)12
Question
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. none</strong> A)Q B)P C)R <div style=padding-top: 35px> Choose the correct letter for each question.
none

A)Q
B)P
C)R
Question
Calculate fx(4,8)\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } , and fy(4,8)\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } when defined. f(x,y)=x2y3x3y2xyf ( x , y ) = x ^ { 2 } y ^ { 3 } - x ^ { 3 } y ^ { 2 } - x y

A) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = - 1016 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2048
B) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = - 1016 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = - 2048
C) fx(4,8)=2044\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 2044 , fy(4,8)=1016\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 1016
D) fx(4,8)=1024\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 1024 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2048
E) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 1016 , fy(4,8)=2044\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2044
Question
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.     -none</strong> A)2 B)8 C)9 D)12 <div style=padding-top: 35px>


-none

A)2
B)8
C)9
D)12
Question
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. local maximum</strong> A)Q B)P C)R <div style=padding-top: 35px> Choose the correct letter for each question.
local maximum

A)Q
B)P
C)R
Question
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.    -relative minimum</strong> A)2 B)8 C)9 D)12 <div style=padding-top: 35px>

-relative minimum

A)2
B)8
C)9
D)12
Question
Calculate fx\frac { \partial f } { \partial x } , and fy(8,2)\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } when defined. f(x,y)=110016x+11yf ( x , y ) = 1100 - 16 x + 11 y

A) fx=16\frac { \partial f } { \partial x } = - 16 , fy(8,2)=11\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 11
B) fx=8\frac { \partial f } { \partial x } = 8 , fy(8,2)=2\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 2
C) fx=16y\frac { \partial f } { \partial x } = - 16 y , fy(8,2)=11x\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 11 x
D) fx=27\frac { \partial f } { \partial x } = - 27 , fy{8,2)=27\left. \frac { \partial f } { \partial y } \right| _ { \{ 8,2 ) } = 27
E) fx=11\frac { \partial f } { \partial x } = 11 , fy{8,2)=16\left. \frac { \partial f } { \partial y } \right| _ { \{ 8,2 ) } = 16
Question
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=9x0.7y0.9f ( x , y ) = 9 x ^ { 0.7 } y ^ { 0.9 }

A) fx=6.3x1.7y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { 1.7 } y ^ { 0.9 } , fy=8.1x0.7y1.9\frac { \partial f } { \partial y } = 8.1 x ^ { 0.7 } y ^ { 1.9 }
B) fx=6.3x0.3y0.1\frac { \partial f } { \partial x } = - 6.3 x ^ { - 0.3 } y ^ { 0.1 } , fy=8.1x0.3y0.1\frac { \partial f } { \partial y } = - 8.1 x ^ { 0.3 } y ^ { - 0.1 }
C) fx=6.3x0.3\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } , fy=8.1y0.1\frac { \partial f } { \partial y } = 8.1 y ^ { - 0.1 }
D) fx=6.3x0.3y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } y ^ { 0.9 } , fy=8.1x0.7y0.1\frac { \partial f } { \partial y } = 8.1 x ^ { 0.7 } y ^ { - 0.1 }
E) fx=6.3x0.3y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } y ^ { 0.9 } , fy=8.1x1.7y1.9\frac { \partial f } { \partial y } = 8.1 x ^ { 1.7 } y ^ { - 1.9 }
Question
Calculate fx\frac { \partial f } { \partial x } and fy\frac { \partial f } { \partial y } when defined.
f(x,y)=8x2yf ( x , y ) = 8 x ^ { 2 } y

A) fx=8x2\frac { \partial f } { \partial x } = 8 x ^ { 2 } , fx=16xy\frac { \partial f } { \partial x } = 16 x y
B) fx=16x\frac { \partial f } { \partial x } = 16 x , fy=8xy\frac { \partial f } { \partial y } = 8 x y
C) fx=16xy\frac { \partial f } { \partial x } = 16 x y , fy=8x2\frac { \partial f } { \partial y } = 8 x ^ { 2 }
D) fx=16xy\frac { \partial f } { \partial x } = 16 x y , fy=8x2y\frac { \partial f } { \partial y } = 8 x ^ { 2 } y
E) fx=8y2\frac { \partial f } { \partial x } = - 8 y ^ { 2 } , fy=16x\frac { \partial f } { \partial y } = - 16 x
Question
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ a relative maximum</strong> A)R B)P C)Q <div style=padding-top: 35px>
Choose the correct letter for each question.

a relative maximum

A)R
B)P
C)Q
Question
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.     -saddle point</strong> A)2 B)8 C)9 D)12 <div style=padding-top: 35px>


-saddle point

A)2
B)8
C)9
D)12
Question
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ none</strong> A)R B)P C)Q <div style=padding-top: 35px>
Choose the correct letter for each question.

none

A)R
B)P
C)Q
Question
Calculate fx(4,5)\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } , and fy(4,5)\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } when defined. f(x,y)=96013x+6y+7xyf ( x , y ) = 960 - 13 x + 6 y + 7 x y

A) fx(4,5)=22\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = - 22 , fy(4,5)=34\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = - 34
B) fx(4,5)=110\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 110 , fy(4,5)=136\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 136
C) fx(4,5)=28\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 28 , fy(4,5)=5\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 5
D) fx(4,5)=22\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 22 , fy(4,5)=34\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 34
E) fx(4,5)=34\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 34 , fy(4,5)=22\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 22
Question
Calculate the values of fx\frac { \partial f } { \partial x } , fy\frac { \partial f } { \partial y } , and fz\frac { \partial f } { \partial z } at (8,3,4)( 8,3,4 ) . f(x,y,z)=xyzf ( x , y , z ) = x y z

A) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=0\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 0
B) fx(8,3,4)=24\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 24 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=12\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 12
C) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32
D) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24
E) fx(8,3,4)=32\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=12\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24
Question
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=e2xyf ( x , y ) = e ^ { 2 x y }

A) fx=2ye2x\frac { \partial f } { \partial x } = 2 y e ^ { 2 x } , fy=2xe2y\frac { \partial f } { \partial y } = 2 x e ^ { 2 y }
B) fx=2ye2xy\frac { \partial f } { \partial x } = 2 y e ^ { 2 x y } , fy=2xe2xy\frac { \partial f } { \partial y } = 2 x e ^ { 2 x y }
C) fx=e2xy\frac { \partial f } { \partial x } = e ^ { 2 x y } , fy=e2xy\frac { \partial f } { \partial y } = e ^ { 2 x y }
D) fx=2e2xy\frac { \partial f } { \partial x } = 2 e ^ { 2 x y } , fy=2e2xy\frac { \partial f } { \partial y } = 2 e ^ { 2 x y }
E) fx=2y\frac { \partial f } { \partial x } = 2 y , fy=2x\frac { \partial f } { \partial y } = 2 x
Question
Calculate 2fx2\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } , 2fyx\frac { \partial ^ { 2 } f } { \partial y x } when defined. f(x,y)=4x0.9y0.7f ( x , y ) = 4 x ^ { 0.9 } y ^ { 0.7 }

A) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = - 2.52 y ^ { 0.3 } x ^ { 0.1 }
B) 2fx2=3.6y0.7x0.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 0.1 } , 2fyx=2.8y0.3x0.9\frac { \partial ^ { 2 } f } { \partial y x } = 2.8 y ^ { - 0.3 } x ^ { 0.9 }
C) 2fx2=3.6y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=3.6y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 3.6 y ^ { - 0.3 } x ^ { - 0.1 }
D) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 2.52 y ^ { - 0.3 } x ^ { - 0.1 }
E) 2fx2=4y0.3x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 4 y ^ { - 0.3 } x ^ { - 1.1 } , 2fyx=4y1.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 4 y ^ { - 1.3 } x ^ { - 0.1 }
Question
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. saddle point</strong> A)Q B)P C)R <div style=padding-top: 35px> Choose the correct letter for each question.
saddle point

A)Q
B)P
C)R
Question
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=6x3y3+x12f ( x , y ) = 6 x ^ { 3 } - y ^ { 3 } + x - 12

A) fx=18x2+13y2\frac { \partial f } { \partial x } = 18 x ^ { 2 } + 1 - 3 y ^ { 2 } , fy=18x2+1\frac { \partial f } { \partial y } = 18 x ^ { 2 } + 1
B) fx=18x2+1\frac { \partial f } { \partial x } = 18 x ^ { 2 } + 1 , fy=3y2\frac { \partial f } { \partial y } = - 3 y ^ { 2 }
C) fx=3y2\frac { \partial f } { \partial x } = - 3 y ^ { 2 } , fy=18x2+1\frac { \partial f } { \partial y } = 18 x ^ { 2 } + 1
D) fx=6x2+1\frac { \partial f } { \partial x } = 6 x ^ { 2 } + 1 , fy=3y2\frac { \partial f } { \partial y } = - 3 y ^ { 2 }
E) fx=6x2\frac { \partial f } { \partial x } = 6 x ^ { 2 } , fy=y2\frac { \partial f } { \partial y } = y ^ { 2 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/137
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Functions of Several Variables
1
Find the volume of the tetrahedron with corners at ( 0, 0, 0 ), ( 3, 0, 0 ), ( 0, 10, 0 ) and ( 0, 0, 8 ). ​

A)40
B) 0
C) 80
D) 120
E) 240
40
2
Compute the integral. 0707(x5y)dx dy\int _ { 0 } ^ { 7 } \int _ { 0 } ^ { 7 } ( x - 5 y ) \mathrm { d } x \mathrm {~d} y

A)-1,372
B) -2
C) -686
D) 172
E) -196
-686
3
Compute the integral. 09x2x2x dy dx\int _ { 0 } ^ { 9 } \int _ { - x ^ { 2 } } ^ { x ^ { 2 } } x \mathrm {~d} y \mathrm {~d} x

A)3,280.5
B) 9
C) 6,561
D) -40.5
E) 0
3,280.5
4
Compute the integral. 0305(yexxy)dx dy\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 5 } \left( y e ^ { x } - x - y \right) \mathrm { d } x \mathrm {~d} y

A)-55.5
B) 9e564.59 e ^ { 5 } - 64.5
C) 4.5e519.54.5 e ^ { 5 } - 19.5
D) 4.5e3+55.54.5 e ^ { - 3 } + 55.5
E) 4.5e564.54.5 e ^ { 5 } - 64.5
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
5
Compute the integral. 0102yx dx dy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 2 - y } x \mathrm {~d} x \mathrm {~d} y

A)19
B) 736\frac { 7 } { 36 }
C) 1
D) 7
E) 76\frac { 7 } { 6 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
6
Compute the integral. 020xex2 dy dx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x } e ^ { x ^ { 2 } } \mathrm {~d} y \mathrm {~d} x

A) 12\frac { 1 } { 2 }
B) e83\frac { e ^ { 8 } } { 3 }
C) 2e42 e ^ { 4 }
D) 12(e41)\frac { 1 } { 2 } \left( e ^ { 4 } - 1 \right)
E) e4e ^ { 4 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
7
Write the integral with the order of integration reversed (changing the limits of integration as necessary). 1101+yf(x,y)dx dy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 + y } } f ( x , y ) \mathrm { d } x \mathrm {~d} y

A) 02x11f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { \sqrt { x } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
B) 02x211f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { x ^ { 2 } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
C) 011x21f(x,y)dy dx\int _ { 0 } ^ { 1 } \int _ { 1 } ^ { x ^ { 2 } - 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
D) 10x211f(x,y)dy dx\int _ { - 1 } ^ { 0 } \int _ { x ^ { 2 } - 1 } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
E) 02x11f(x,y)dy dx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { \sqrt { x - 1 } } ^ { 1 } f ( x , y ) \mathrm { d } y \mathrm {~d} x
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
8
Compute the integral. 0408ex+y dx dy\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 8 } e ^ { x + y } \mathrm {~d} x \mathrm {~d} y

A) e8e4e ^ { 8 } e ^ { 4 }
B) (e81)(e41)\left( e ^ { 8 } - 1 \right) \left( e ^ { 4 } - 1 \right)
C) e12+12e ^ { 12 } + 12
D) e1212e ^ { 12 } - 12
E) e4(e51)\frac { e ^ { 4 } } { \left( e ^ { 5 } - 1 \right) }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
9
Find the average value of the given function over the indicated domain. f(x,y)=yf ( x , y ) = y  <strong>Find the average value of the given function over the indicated domain.    f ( x , y ) = y       </strong> A)  - 2  B)  \frac { 4 } { 3 }  C)  - \frac { 2 } { 3 }  D) 2 E)  \frac { 2 } { 3 }

A) 2- 2
B) 43\frac { 4 } { 3 }
C) 23- \frac { 2 } { 3 }
D) 2
E) 23\frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
10
Compute the integral. 0104x25x(x+y)12 dy dx\int _ { 0 } ^ { 10 } \int _ { 4 - x } ^ { 25 - x } ( x + y ) ^ { \frac { 1 } { 2 } } \mathrm {~d} y \mathrm {~d} x

A)60
B) 15
C) -52
D) 780
E) 117
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
11
Find Rf(x,y)dxdy\iint _ { R } f ( x , y ) d x d y , where f(x,y)=xf ( x , y ) = x and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)  <strong>Find  \iint _ { R } f ( x , y ) d x d y  , where  f ( x , y ) = x  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)      </strong> A)13 B) 2,197 C)    \frac { 2,197 } { 6 }  D) 113 E)  \frac { 169 } { 6 }

A)13
B) 2,197
C) 2,1976\frac { 2,197 } { 6 }
D) 113
E) 1696\frac { 169 } { 6 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
12
Compute the integral.
105y5y+5ex+y dx dy\int _ { - 10 } ^ { 5 } \int _ { y - 5 } ^ { y + 5 } e ^ { x + y } \mathrm {~d} x \mathrm {~d} y

A) 12(e10e5e5+e15)\frac { 1 } { 2 } \left( e ^ { 10 } - e ^ { 5 } - e ^ { - 5 } + e ^ { - 15 } \right)
B) 12(e15e5e10+e25)\frac { 1 } { 2 } \left( e ^ { 15 } - e ^ { 5 } - e ^ { - 10 } + e ^ { - 25 } \right)
C) (e5e5e15+e10)\left( e ^ { 5 } - e ^ { - 5 } - e ^ { - 15 } + e ^ { - 10 } \right)
D) 14(e10e10+e5e5)\frac { 1 } { 4 } \left( e ^ { 10 } - e ^ { - 10 } + e ^ { 5 } - e ^ { - 5 } \right)
E) 12(e15e5e15+e25)\frac { 1 } { 2 } \left( e ^ { 15 } - e ^ { 5 } - e ^ { - 15 } + e ^ { - 25 } \right)
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
13
Your latest CD - ROM drive is expected to sell between q=200,000p2q = 200,000 - p ^ { 2 } and q=230,000p2q = 230,000 - p ^ { 2 }
Units if priced at p. You plan to set the price between $200 and $400. What are the maximum and minimum possible revenues you can make What is the average of all the possible revenues you can make

A)$36,800,000,000, $8,000,000,000, $140,166,667
B) $38,000,000, $16,000,000, $34,500,000
C) $36,800,000,000, $8,000,000,000, $73,500,000
D) $45,960,000, $79,840,000, $3,120,000
E) $92,000,000, $40,000,000, $774,000,000,000,000
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
14
The town of West Podunk is shaped like a rectangle 80 miles from west to east and 90 miles from north to south (see the figure). It has a population density of
P(x,y)=e0.1(x+y)P ( x , y ) = e ^ { - 0.1 ( x + y ) }
hundred people per square mile x miles east and y miles north of the southwest corner of town. What is the total population of the town
 The town of West Podunk is shaped like a rectangle 80 miles from west to east and 90 miles from north to south (see the figure). It has a population density of  P ( x , y ) = e ^ { - 0.1 ( x + y ) }  hundred people per square mile x miles east and y miles north of the southwest corner of town. What is the total population of the town    Please enter your answer as a number without the units.

Please enter your answer as a number without the units.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
15
Find the volume under the graph of z=5x2z = 5 - x ^ { 2 } over the triangle 0x30 \leq x \leq 3 and 0y3x0 \leq y \leq 3 - x .

A)15.75
B) 42
C) 22.5
D) 7.5
E) 29.25
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
16
Find Rf(x,y)dx dy\iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y , where f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)  <strong>Find  \iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y  , where  f ( x , y ) = x y ^ { 2 }  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)        f ( y ) = \sqrt { 9 - y ^ { 2 } }   </strong> A)32.4 B) 24.3 C) 16.2 D) 27 E) 259.2  f(y)=9y2f ( y ) = \sqrt { 9 - y ^ { 2 } }

A)32.4
B) 24.3
C) 16.2
D) 27
E) 259.2
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
17
A productivity model at the Handy Gadget Company is P=13,000x0.1y0.9P = 13,000 x ^ { 0.1 } y ^ { 0.9 }
Where P is the number of gadgets the company turns out per month, x is the number of employees at the company, and y is the monthly operating budget in thousands of dollars. Because the company hires part - time workers, it uses anywhere between 44 and 54 workers each month, and its operating budget varies from $12,000 to $14,000 per month. What is the average of the possible numbers gadgets it can turn out per month (Round the answer to the nearest 1,000 gadgets.)

A)8,000 gadgets
B) 61,000 gadgets
C) 193,000 gadgets
D) 3,000 gadgets
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
18
The temperature at the point (x,y)( x , y ) on the square with vertices (0, 0), (0, 1), (1, 0) and (1, 1) is given by T(x,y)=4x2+8y2T ( x , y ) = 4 x ^ { 2 } + 8 y ^ { 2 }
Find the hottest and coldest points on the square.

A)(2, 2), (0, 0)
B) (0, 1), (0, 0)
C) (1, 1), (1, 0)
D) (1, 0), (0, 0)
E) (1, 1), (0, 0)
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
19
Find Rf(x,y)dx dy\iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y , where f(x,y)=9+yf ( x , y ) = 9 + y and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)
 <strong>Find  \iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y  , where  f ( x , y ) = 9 + y  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)      f ( y ) = 9 - y ^ { 2 }  </strong> A)243 B) 729 C) 324 D) 972 E) 81  f(y)=9y2f ( y ) = 9 - y ^ { 2 }

A)243
B) 729
C) 324
D) 972
E) 81
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
20
Find the average value of the given function over the indicated domain. f(x,y)=yf ( x , y ) = y
 <strong>Find the average value of the given function over the indicated domain.    f ( x , y ) = y     </strong> A)0 B) 2 C) 1.3 D) 10 E) 7

A)0
B) 2
C) 1.3
D) 10
E) 7
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
21
Solve the given problem by using substitution.
Find the minimum value of f(x,y,z)=2x2+2x+y2y+z2z4f ( x , y , z ) = 2 x ^ { 2 } + 2 x + y ^ { 2 } - y + z ^ { 2 } - z - 4 subject to z=2yz = 2 y .

A) fmin=3.775f _ { \min } = - 3.775
B) fmin=3.5f _ { \min } = - 3.5
C) fmin=4f _ { \min } = - 4
D) fmin=4.95f _ { \min } = - 4.95
E) fmin=4.7f _ { \min } = - 4.7
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
22
Use Lagrange Multipliers to solve the problem.
Find the maximum value of f(x,y)=3xyf ( x , y ) = 3 x y subject to x2+y2=8x ^ { 2 } + y ^ { 2 } = 8 .

A) fmax=24f _ { \max } = 24
B) fmax=12f _ { \max } = 12
C) fmax=17f _ { \max } = 17
D) fmax=7f _ { \max } = 7
E) fmax=32f _ { \max } = 32
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
23
Solve the given problem by using substitution.
Minimize S=xy+25xz+5yzS = x y + 25 x z + 5 y z subject to xyz=1x y z = 1 with x>0x > 0 , y>0y > 0 , z>0z > 0 .

A) Smin=20S _ { \min } = 20
B) Smin=15S _ { \min } = 15
C) Smin=5S _ { \min } = 5
D) Smin=25S _ { \min } = 25
E) Smin=1S _ { \min } = 1
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
24
Solve the given problem by using substitution.
Find the minimum value of f(x,y,z)=x2+y2+z24f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 4 subject to y=2xy = 2 x .

A) fmin=5f _ { \min } = - 5
B) fmin=4f _ { \min } = - 4
C) fmin=3f _ { \min } = - 3
D) fmin=2f _ { \min } = - 2
E) fmin=6f _ { \min } = - 6
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
25
What point on the surface z is closest to the origin z=x2+y5z = x ^ { 2 } + y - 5
Hint : Minimize the square of the distance from (x,y,z)( x , y , z ) to the origin.

A) (2.5,0,2.5)( 2.5,0 , - 2.5 )
B) (2,12,12)\left( - 2 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right) and (2,12,12)\left( 2 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
C) (0,2.5,2.5)( 0,2.5 , - 2.5 )
D) (0,12,12)\left( 0 , \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
E) (0,2.5,2.5)( 0,2.5 , - 2.5 ) and (0,2.5,2.5)( 0,2.5,2.5 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
26
Classify the highlighted value in the table. <strong>Classify the highlighted value in the table.   ​</strong> A)a relative maximum B) a saddle point C) a relative minimum D) none of these

A)a relative maximum
B) a saddle point
C) a relative minimum
D) none of these
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
27
Solve the given problem by using substitution.
Find the maximum value of f(x,y,z)=3x2xy2+yz2+zf ( x , y , z ) = 3 - x ^ { 2 } - x - y ^ { 2 } + y - z ^ { 2 } + z subject to y=3xy = 3 x .

A) fmax=3.225f _ { \max } = 3.225
B) fmax=3f _ { \max } = 3
C) fmax=3.35f _ { \max } = 3.35
D) fmax=2.775f _ { \max } = 2.775
E) fmax=2.45f _ { \max } = 2.45
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
28
Locate the critical point of the function. f(x,y)=5x2+2y2+4f ( x , y ) = 5 x ^ { 2 } + 2 y ^ { 2 } + 4

A) (5,2,137)( 5,2,137 )
B) (5,2,4)( 5,2,4 )
C) (0,0,4)( 0,0,4 )
D) (0,4,4)( 0,4,4 )
E) (0,0,0)( 0,0,0 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
29
Use Lagrange Multipliers to solve the problem.
Find the maximum value of f(x,y)=xyf ( x , y ) = x y subject to x+2y=80x + 2 y = 80 .

A) fmax=800f _ { \max } = 800
B) fmax=40f _ { \max } = 40
C) fmax=400f _ { \max } = 400
D) fmax=2f _ { \max } = 2
E) fmax=10f _ { \max } = 10
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
30
At what point on the given surface is the quantity x2+y2+z2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } a minimum (The method of Lagrange multipliers can be used here.) z=(4x2+10x+y2+22)12z = \left( 4 x ^ { 2 } + 10 x + y ^ { 2 } + 22 \right) ^ { \frac { 1 } { 2 } }

A) (1,0,5)( - 1,0,5 )
B) (1,0,4)( 1,0,4 )
C) (1,0,4)( - 1,0,4 )
D) (1,0,6)( - 1,0,6 )
E) (3,0,3)( - 3,0,3 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
31
Your latest CD - ROM drive is expected to sell between
q=190,000p2q = 190,000 - p ^ { 2 } and q=210,000p2q = 210,000 - p ^ { 2 }
units if priced at p. You plan to set the price between $200 and $300. What are the maximum and minimum possible revenues you can make What is the average of all the possible revenues you can make

Please enter your answer as three numbers, separated by commas.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
32
Find the point on the given plane closest to Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   . .
Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   .
NOTE: Please enter your answer in the form Find the point on the given plane closest to   . ​   ​ NOTE: Please enter your answer in the form   . .
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
33
In the table below, classify each highlighted value. ​ <strong>In the table below, classify each highlighted value. ​   ​</strong> A)a saddle point B) a relative maximum C) a relative minimum D) none of these

A)a saddle point
B) a relative maximum
C) a relative minimum
D) none of these
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
34
The temperature at the point The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas. on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​ The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas.
Find the hottest and coldest points on the square.

NOTE: Please enter your answers in the form The temperature at the point   on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​   ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form   , separated by commas. , separated by commas.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
35
Use Lagrange Multipliers to solve the given problem.
Find the maximum value of f(x,y)=xyf ( x , y ) = x y subject to 2x+y=602 x + y = 60 .

A) fmax=10f _ { \max } = 10
B) fmax=450f _ { \max } = 450
C) fmax=30f _ { \max } = 30
D) fmax=2f _ { \max } = 2
E) fmax=225f _ { \max } = 225
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the given problem by using substitution.
Find the maximum value of f(x,y,z)=8x2y2z2f ( x , y , z ) = 8 - x ^ { 2 } - y ^ { 2 } - z ^ { 2 } subject to z=3yz = 3 y .

A) fmax=8f _ { \max } = 8
B) fmax=9f _ { \max } = 9
C) fmax=3f _ { \max } = 3
D) fmax=10f _ { \max } = 10
E) fmax=7f _ { \max } = 7
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the given problem by using substitution.
Minimize S=xy+xz+yzS = x y + x z + y z subject to xyz=5x y z = 5 with x>0x > 0 , y>0y > 0 , z>0z > 0 .

A) Smin=3(523)S _ { \min } = 3 \left( 5 ^ { \frac { 2 } { 3 } } \right)
B) Smin=3(623)S _ { \min } = 3 \left( 6 ^ { \frac { 2 } { 3 } } \right)
C) Smin=3(423)S _ { \min } = 3 \left( 4 ^ { \frac { 2 } { 3 } } \right)
D) Smin=3(513)S _ { \min } = 3 \left( 5 ^ { \frac { 1 } { 3 } } \right)
E) Smin=3(613)S _ { \min } = 3 \left( 6 ^ { \frac { 1 } { 3 } } \right)
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
38
Find the point on the given plane closest to (1,1,0)( 1,1,0 ) . 2x2y4z+96=02 x - 2 y - 4 z + 96 = 0

A) (3,5,16)( - 3,5,16 )
B) (7,9,16)( - 7,9,16 )
C) (8,8,4)( - 8,8,4 )
D) (7,9,16)( 7,9,16 )
E) (7,9,4)( - 7,9,4 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
39
What point on the surface z is closest to the origin
z=x2+y2z = x ^ { 2 } + y - 2
Hint : Minimize the square of the distance from (x,y,z)( x , y , z ) to the origin.

NOTE: Please enter your answer(s) in the form (x,y,z)( x , y , z ) . If there is more than one answer, separate them with commas.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
40
A productivity model at the Handy Gadget Company is
P=15,000x0.1y0.9P = 15,000 x ^ { 0.1 } y ^ { 0.9 }
where P is the number of gadgets the company turns out per month, x is the number of employees at the company, and y is the monthly operating budget in thousands of dollars. Because the company hires part - time workers, it uses anywhere between 43 and 53 workers each month, and its operating budget varies from $13,000 to $17,000 per month. What is the average of the possible numbers gadgets it can turn out per month (Round the answer to the nearest 1,000 gadgets.)

Please enter your answer as a number without the units.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
41
Trans World Airlines (TWA) has a rule for checked baggage, "The total dimensions (length + width + height) may not exceed 57 inches for each bag". What is the volume of the largest volume bag you can check on a TWA flight
Enter your answer as a number without the units.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
42
The US Postal Service (USPS) will accept only packages with length plus girth no more than 120 inches. (See the figure.)  <strong>The US Postal Service (USPS) will accept only packages with length plus girth no more than 120 inches. (See the figure.)     What are the dimensions of the largest volume package the USPS will accept </strong> A)  24 \times 24 \times 24  inches B)  24 \times 24 \times 48  inches C)  20 \times 20 \times 40  inches D)  24 \times 48 \times 48  inches E)  40 \times 40 \times 40  inches
What are the dimensions of the largest volume package the USPS will accept

A) 24×24×2424 \times 24 \times 24 inches
B) 24×24×4824 \times 24 \times 48 inches
C) 20×20×4020 \times 20 \times 40 inches
D) 24×48×4824 \times 48 \times 48 inches
E) 40×40×4040 \times 40 \times 40 inches
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
43
Locate the local minimum of the function. f(x,y)=xy+4x+4yf ( x , y ) = x y + \frac { 4 } { x } + \frac { 4 } { y }

A) (413,413,36423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 64 ^ { \frac { 2 } { 3 } } \right)
B) (413,413,1223)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 12 ^ { \frac { 2 } { 3 } } \right)
C) (413,413,423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 2 } { 3 } } \right)
D) (413,413,3423)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 4 ^ { \frac { 2 } { 3 } } \right)
E) (413,413,3413)\left( 4 ^ { \frac { 1 } { 3 } } , 4 ^ { \frac { 1 } { 3 } } , 3 \cdot 4 ^ { \frac { 1 } { 3 } } \right)
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
44
Locate the local maximum of the function. f(x,y)=e(x6+y2)f ( x , y ) = e ^ { - \left( x ^ { 6 } + y ^ { 2 } \right) }

A) (0,0,1)( 0,0,1 )
B) (1,0,1e)\left( 1,0 , \frac { 1 } { e } \right)
C) (0,0,0)( 0,0,0 )
D) (1,0,e)( 1,0 , e )
E) (1,0,1e2)\left( 1,0 , \frac { 1 } { e ^ { 2 } } \right)
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
45
Find x and y values of the relative extrema of the function. f(x,y)=x4+8xy2+2y4f ( x , y ) = x ^ { 4 } + 8 x y ^ { 2 } + 2 y ^ { 4 }

A) (0,0,0)( 0,0,0 )
B) (0,2,4)( 0 , - 2 , - 4 )
C) (2,2,16)( - 2 , - 2 , - 16 )
D) (2,2,16)( 2 , - 2 , - 16 )
E) (2,2,16)( - 2,2 , - 16 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
46
Trans World Airlines (TWA) has a rule for checked baggage, "The total dimensions (length + width + height) may not exceed 66 inches for each bag". What is the volume of the largest volume bag you can check on a TWA flight

A)10,648 in.3
B) 66 in.3
C) 287,496 in.3
D) 132 in.3
E) 22 in.3
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
47
Locate the maximum of the function. f(x,y)=e(x2+y2+2x)f ( x , y ) = e ^ { - \left( x ^ { 2 } + y ^ { 2 } + 2 x \right) }

A) (1,0,e1)\left( - 1,0 , e ^ { - 1 } \right)
B) (2,0,e)( 2,0 , e )
C) (1,0,e)( 1,0 , e )
D) (1,0,e)( - 1,0 , e )
E) (2,0,e)( - 2,0 , e )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
48
How many critical points does the following function have f(x,y)=4(y2+x2)f ( x , y ) = 4 - \left( y ^ { 2 } + x ^ { 2 } \right)

A)four
B) one
C) two
D) three
E) none
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
49
The cost of controlling emissions at a firm goes up rapidly as the amount of emissions reduced goes up. Here is a possible model. C(x,y)=6,000+100x2+25y2C ( x , y ) = 6,000 + 100 x ^ { 2 } + 25 y ^ { 2 }
Where x is the reduction in sulfur emissions, y is the reduction in lead emissions (in pounds of pollutant per day), and C is the daily cost to the firm (in dollars) of this reduction. Government clean-air subsidies amount to $600 per pound of sulfur and $50 per pound of lead removed. How many pounds of pollutant should the firm remove each day to minimize the net cost (cost minus subsidy)

A)3.5 lb of sulfur and 2 lb of lead
B) 6 lb of sulfur and 1 lb of lead
C) 3 lb of sulfur and 1 lb of lead
D) 1.9 lb of sulfur and 3.5 lb of lead
E) 1 lb of sulfur and 3 lb of lead
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
50
Your company manufactures two models of stereo speakers, the Ultra Mini and the Big Stack. Demand for each depends partly on the price of the other. If one is expensive then more people will buy the other. If p1 is the price per pair of the Ultra Mini and p2 is the price of the Big Stack, demand for the Ultra Mini is given by q1(p1,p2)=50,000100p1+10p2q _ { 1 } \left( p _ { 1 } , p _ { 2 } \right) = 50,000 - 100 p _ { 1 } + 10 p _ { 2 }
Where q1 represents the number of pairs of Ultra Minis that will be sold in a year. The demand for the Big Stack is given by
q2(p1,p2)=150,000+10p1100p2q _ { 2 } \left( p _ { 1 } , p _ { 2 } \right) = 150,000 + 10 p _ { 1 } - 100 p _ { 2 }
Find the prices for the Ultra Mini and the Big Stack that will maximize your total revenue.

Round your answer to the nearest dollar.

A)$798 for Ultra Mini and $275 for Big Stack
B) $428 for Ultra Mini and $783 for Big Stack
C) $275 for Ultra Mini and $798 for Big Stack
D) $328 for Ultra Mini and $783 for Big Stack
E) $783 for Ultra Mini and $328 for Big Stack
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
51
Locate the saddle point of the function. f(x,y)=x26x+yeyf ( x , y ) = x ^ { 2 } - 6 x + y - e ^ { y }

A) (6,1,10)( 6,1 , - 10 )
B) (6,1,1)( 6,1 , - 1 )
C) (3,0,10)( 3,0 , - 10 )
D) (6,0,10)( 6,0 , - 10 )
E) (3,1,10)( 3,1 , - 10 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
52
Your company manufactures two models of stereo speakers, the Ultra Mini and the Big Stack. Demand for each depends partly on the price of the other. If one is expensive then more people will buy the other. If p1 is the price per pair of the Ultra Mini and p2 is the price of the Big Stack, demand for the Ultra Mini is given by q1(p1,p2)=200,000100p1+10p2q _ { 1 } \left( p _ { 1 } , p _ { 2 } \right) = 200,000 - 100 p _ { 1 } + 10 p _ { 2 }
Where q1 represents the number of pairs of Ultra Minis that will be sold in a year. The demand for the Big Stack is given by
q2(p1,p2)=150,000+10p1100p2q _ { 2 } \left( p _ { 1 } , p _ { 2 } \right) = 150,000 + 10 p _ { 1 } - 100 p _ { 2 }
Find the prices for the Ultra Mini and the Big Stack that will maximize your total revenue.

Round your answer to the nearest dollar.

A)$874 for Ultra Mini and $1,033 for Big Stack
B) $1,033 for Ultra Mini and $874 for Big Stack
C) $1,186 for Ultra Mini and $859 for Big Stack
D) $1,086 for Ultra Mini and $859 for Big Stack
E) $859 for Ultra Mini and $1,086 for Big Stack
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
53
Locate the maximum of the function.
Locate the maximum of the function. ​   ​ Express your answer as an ordered triple. If there is more than one answer, separate them by commas.
Express your answer as an ordered triple. If there is more than one answer, separate them by commas.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
54
The US Postal Service (USPS) will accept only packages with length plus girth no more than 102 inches. (See the figure.)
 The US Postal Service (USPS) will accept only packages with length plus girth no more than 102 inches. (See the figure.)   What are the dimensions of the largest volume package the USPS will accept  Express your answer as an ordered triple in the form  ( x , y , z )  .
What are the dimensions of the largest volume package the USPS will accept

Express your answer as an ordered triple in the form (x,y,z)( x , y , z ) .
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
55
Locate the local minimum of the function.
Locate the local minimum of the function. ​   ​ Express your answer as an ordered triple.
Express your answer as an ordered triple.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
56
Let H=fxx(a,b)fyy(a,b)f2xy(a,b)H = f _ { x x } ( a , b ) f _ { y y } ( a , b ) - f ^ { 2 } x y ( a , b )
What condition on H guarantees that f has a relative extremum at the point (a,b)( a , b )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
57
Locate the critical point of the function. f(x,y)=4x26xy2+4yf ( x , y ) = 4 - x ^ { 2 } - 6 x - y ^ { 2 } + 4 y

A) (3,2,17)( 3,2 , - 17 )
B) (3,2,17)( - 3,2,17 )
C) (6,4,4)( 6,4,4 )
D) (6,4,4)( - 6,4,4 )
E) (2,3,17)( 2 , - 3,17 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
58
Locate the local maximum of the function. f(x,y)=x2y8x24y2f ( x , y ) = x ^ { 2 } y - 8 x ^ { 2 } - 4 y ^ { 2 }

A) (8,4,256)( 8,4 , - 256 )
B) (0,0,0)( 0,0,0 )
C) (8,8,256)( - 8,8 , - 256 )
D) (8,4,0)( - 8 , - 4,0 )
E) (8,8,256)( 8,8 , - 256 )
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
59
How many critical points does the function have f(x,y)=2xeyf ( x , y ) = 2 x e ^ { y }

A)three
B) two
C) four
D) one
E) none
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
60
The cost of controlling emissions at a firm goes up rapidly as the amount of emissions reduced goes up. Here is a possible model.
C(x,y)=6,000+200x2+75y2C ( x , y ) = 6,000 + 200 x ^ { 2 } + 75 y ^ { 2 }
where x is the reduction in sulfur emissions, y is the reduction in lead emissions (in pounds of pollutant per day), and C is the daily cost to the firm (in dollars) of this reduction. Government clean-air subsidies amount to $300 per pound of sulfur and $50 per pound of lead removed. How many pounds of pollutant should the firm remove each day to minimize the net cost (cost minus subsidy)

Enter your answer as an ordered pair in the form (x,y)( x , y ) . Round your answer to three decimal places if necessary.
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
61
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ a relative minimum</strong> A)R B)P C)Q
Choose the correct letter for each question.

a relative minimum

A)R
B)P
C)Q
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
62
Calculate 2fy2\frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } , 2fxy\frac { \partial ^ { 2 } f } { \partial x y } and evaluate each at (5,7)( 5,7 ) . f(x,y)=95016x+14y+6xyf ( x , y ) = 950 - 16 x + 14 y + 6 x y

A) 2fy2(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 6 , 2fxy(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 0
B) 2fy2(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 0 , 2fxy(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 0
C) 2fy2(5,7)=16\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 16 , 2fxy{5,7)=14\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { \{ 5,7 ) } = 14
D) 2fy2(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 6 , 2fxy(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 6
E) 2fy2(5,7)=0\left. \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } \right| _ { ( 5,7 ) } = 0 , 2fxy(5,7)=6\left. \frac { \partial ^ { 2 } f } { \partial x y } \right| _ { ( 5,7 ) } = 6
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
63
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.    -relative maximum</strong> A)2 B)8 C)9 D)12

-relative maximum

A)2
B)8
C)9
D)12
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
64
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. none</strong> A)Q B)P C)R Choose the correct letter for each question.
none

A)Q
B)P
C)R
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
65
Calculate fx(4,8)\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } , and fy(4,8)\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } when defined. f(x,y)=x2y3x3y2xyf ( x , y ) = x ^ { 2 } y ^ { 3 } - x ^ { 3 } y ^ { 2 } - x y

A) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = - 1016 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2048
B) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = - 1016 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = - 2048
C) fx(4,8)=2044\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 2044 , fy(4,8)=1016\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 1016
D) fx(4,8)=1024\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 1024 , fy(4,8)=2048\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2048
E) fx(4,8)=1016\left. \frac { \partial f } { \partial x } \right| _ { ( 4,8 ) } = 1016 , fy(4,8)=2044\left. \frac { \partial f } { \partial y } \right| _ { ( 4,8 ) } = 2044
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
66
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.     -none</strong> A)2 B)8 C)9 D)12


-none

A)2
B)8
C)9
D)12
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
67
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. local maximum</strong> A)Q B)P C)R Choose the correct letter for each question.
local maximum

A)Q
B)P
C)R
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
68
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.    -relative minimum</strong> A)2 B)8 C)9 D)12

-relative minimum

A)2
B)8
C)9
D)12
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
69
Calculate fx\frac { \partial f } { \partial x } , and fy(8,2)\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } when defined. f(x,y)=110016x+11yf ( x , y ) = 1100 - 16 x + 11 y

A) fx=16\frac { \partial f } { \partial x } = - 16 , fy(8,2)=11\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 11
B) fx=8\frac { \partial f } { \partial x } = 8 , fy(8,2)=2\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 2
C) fx=16y\frac { \partial f } { \partial x } = - 16 y , fy(8,2)=11x\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } = 11 x
D) fx=27\frac { \partial f } { \partial x } = - 27 , fy{8,2)=27\left. \frac { \partial f } { \partial y } \right| _ { \{ 8,2 ) } = 27
E) fx=11\frac { \partial f } { \partial x } = 11 , fy{8,2)=16\left. \frac { \partial f } { \partial y } \right| _ { \{ 8,2 ) } = 16
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
70
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=9x0.7y0.9f ( x , y ) = 9 x ^ { 0.7 } y ^ { 0.9 }

A) fx=6.3x1.7y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { 1.7 } y ^ { 0.9 } , fy=8.1x0.7y1.9\frac { \partial f } { \partial y } = 8.1 x ^ { 0.7 } y ^ { 1.9 }
B) fx=6.3x0.3y0.1\frac { \partial f } { \partial x } = - 6.3 x ^ { - 0.3 } y ^ { 0.1 } , fy=8.1x0.3y0.1\frac { \partial f } { \partial y } = - 8.1 x ^ { 0.3 } y ^ { - 0.1 }
C) fx=6.3x0.3\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } , fy=8.1y0.1\frac { \partial f } { \partial y } = 8.1 y ^ { - 0.1 }
D) fx=6.3x0.3y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } y ^ { 0.9 } , fy=8.1x0.7y0.1\frac { \partial f } { \partial y } = 8.1 x ^ { 0.7 } y ^ { - 0.1 }
E) fx=6.3x0.3y0.9\frac { \partial f } { \partial x } = 6.3 x ^ { - 0.3 } y ^ { 0.9 } , fy=8.1x1.7y1.9\frac { \partial f } { \partial y } = 8.1 x ^ { 1.7 } y ^ { - 1.9 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
71
Calculate fx\frac { \partial f } { \partial x } and fy\frac { \partial f } { \partial y } when defined.
f(x,y)=8x2yf ( x , y ) = 8 x ^ { 2 } y

A) fx=8x2\frac { \partial f } { \partial x } = 8 x ^ { 2 } , fx=16xy\frac { \partial f } { \partial x } = 16 x y
B) fx=16x\frac { \partial f } { \partial x } = 16 x , fy=8xy\frac { \partial f } { \partial y } = 8 x y
C) fx=16xy\frac { \partial f } { \partial x } = 16 x y , fy=8x2\frac { \partial f } { \partial y } = 8 x ^ { 2 }
D) fx=16xy\frac { \partial f } { \partial x } = 16 x y , fy=8x2y\frac { \partial f } { \partial y } = 8 x ^ { 2 } y
E) fx=8y2\frac { \partial f } { \partial x } = - 8 y ^ { 2 } , fy=16x\frac { \partial f } { \partial y } = - 16 x
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
72
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ a relative maximum</strong> A)R B)P C)Q
Choose the correct letter for each question.

a relative maximum

A)R
B)P
C)Q
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
73
In the table below, classify each highlighted value.
<strong>In the table below, classify each highlighted value.     -saddle point</strong> A)2 B)8 C)9 D)12


-saddle point

A)2
B)8
C)9
D)12
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
74
Classify each labeled point on the graph.
<strong>Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ none</strong> A)R B)P C)Q
Choose the correct letter for each question.

none

A)R
B)P
C)Q
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
75
Calculate fx(4,5)\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } , and fy(4,5)\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } when defined. f(x,y)=96013x+6y+7xyf ( x , y ) = 960 - 13 x + 6 y + 7 x y

A) fx(4,5)=22\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = - 22 , fy(4,5)=34\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = - 34
B) fx(4,5)=110\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 110 , fy(4,5)=136\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 136
C) fx(4,5)=28\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 28 , fy(4,5)=5\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 5
D) fx(4,5)=22\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 22 , fy(4,5)=34\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 34
E) fx(4,5)=34\left. \frac { \partial f } { \partial x } \right| _ { ( 4,5 ) } = 34 , fy(4,5)=22\left. \frac { \partial f } { \partial y } \right| _ { ( 4,5 ) } = 22
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
76
Calculate the values of fx\frac { \partial f } { \partial x } , fy\frac { \partial f } { \partial y } , and fz\frac { \partial f } { \partial z } at (8,3,4)( 8,3,4 ) . f(x,y,z)=xyzf ( x , y , z ) = x y z

A) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=0\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 0
B) fx(8,3,4)=24\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 24 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=12\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 12
C) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32
D) fx(8,3,4)=12\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=32\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24
E) fx(8,3,4)=32\left. \frac { \partial f } { \partial x } \right| _ { ( 8,3,4 ) } = 32 , fy(8,3,4)=12\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 12 , fy(8,3,4)=24\left. \frac { \partial f } { \partial y } \right| _ { ( 8,3,4 ) } = 24
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
77
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=e2xyf ( x , y ) = e ^ { 2 x y }

A) fx=2ye2x\frac { \partial f } { \partial x } = 2 y e ^ { 2 x } , fy=2xe2y\frac { \partial f } { \partial y } = 2 x e ^ { 2 y }
B) fx=2ye2xy\frac { \partial f } { \partial x } = 2 y e ^ { 2 x y } , fy=2xe2xy\frac { \partial f } { \partial y } = 2 x e ^ { 2 x y }
C) fx=e2xy\frac { \partial f } { \partial x } = e ^ { 2 x y } , fy=e2xy\frac { \partial f } { \partial y } = e ^ { 2 x y }
D) fx=2e2xy\frac { \partial f } { \partial x } = 2 e ^ { 2 x y } , fy=2e2xy\frac { \partial f } { \partial y } = 2 e ^ { 2 x y }
E) fx=2y\frac { \partial f } { \partial x } = 2 y , fy=2x\frac { \partial f } { \partial y } = 2 x
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
78
Calculate 2fx2\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } , 2fyx\frac { \partial ^ { 2 } f } { \partial y x } when defined. f(x,y)=4x0.9y0.7f ( x , y ) = 4 x ^ { 0.9 } y ^ { 0.7 }

A) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = - 2.52 y ^ { 0.3 } x ^ { 0.1 }
B) 2fx2=3.6y0.7x0.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 0.1 } , 2fyx=2.8y0.3x0.9\frac { \partial ^ { 2 } f } { \partial y x } = 2.8 y ^ { - 0.3 } x ^ { 0.9 }
C) 2fx2=3.6y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=3.6y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 3.6 y ^ { - 0.3 } x ^ { - 0.1 }
D) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 2.52 y ^ { - 0.3 } x ^ { - 0.1 }
E) 2fx2=4y0.3x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 4 y ^ { - 0.3 } x ^ { - 1.1 } , 2fyx=4y1.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 4 y ^ { - 1.3 } x ^ { - 0.1 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
79
Classify each labeled point on the graph. <strong>Classify each labeled point on the graph.   Choose the correct letter for each question. saddle point</strong> A)Q B)P C)R Choose the correct letter for each question.
saddle point

A)Q
B)P
C)R
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
80
Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=6x3y3+x12f ( x , y ) = 6 x ^ { 3 } - y ^ { 3 } + x - 12

A) fx=18x2+13y2\frac { \partial f } { \partial x } = 18 x ^ { 2 } + 1 - 3 y ^ { 2 } , fy=18x2+1\frac { \partial f } { \partial y } = 18 x ^ { 2 } + 1
B) fx=18x2+1\frac { \partial f } { \partial x } = 18 x ^ { 2 } + 1 , fy=3y2\frac { \partial f } { \partial y } = - 3 y ^ { 2 }
C) fx=3y2\frac { \partial f } { \partial x } = - 3 y ^ { 2 } , fy=18x2+1\frac { \partial f } { \partial y } = 18 x ^ { 2 } + 1
D) fx=6x2+1\frac { \partial f } { \partial x } = 6 x ^ { 2 } + 1 , fy=3y2\frac { \partial f } { \partial y } = - 3 y ^ { 2 }
E) fx=6x2\frac { \partial f } { \partial x } = 6 x ^ { 2 } , fy=y2\frac { \partial f } { \partial y } = y ^ { 2 }
Unlock Deck
Unlock for access to all 137 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 137 flashcards in this deck.