Deck 14: Review

Full screen (f)
exit full mode
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0,0);P2=(9,5)\mathrm { P } _ { 1 } = ( 0,0 ) ; \mathrm { P } _ { 2 } = ( - 9,5 )

A) 4
B) 106\sqrt { 106 }
C) 14\sqrt { 14 }
D) 106
Use Space or
up arrow
down arrow
to flip the card.
Question
Plot the point.

- (3,1)( - 3 , - 1 )

 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

C)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Plot the point.

- (1,4)( 1 , - 4 )

 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A)  \sqrt { 15 }  B) 56 C) 1 D)  \sqrt { 113 }  <div style=padding-top: 35px>

A) 15\sqrt { 15 }
B) 56
C) 1
D) 113\sqrt { 113 }
Question
Tell in which quadrant or on what coordinate axis the point lies.
(-16, 14)

A) Quadrant III
B) Quadrant II
C) Quadrant I
D) Quadrant IV
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(3,3);P2=(3,2)P _ { 1 } = ( - 3 , - 3 ) ; P _ { 2 } = ( - 3,2 )

A) 6
B) 5\sqrt { 5 }
C) 5
D) 4
Question
Tell in which quadrant or on what coordinate axis the point lies.
(-10, -6)

A) Quadrant IV
B) Quadrant II
C) Quadrant III
D) Quadrant I
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 108 B)  6 \sqrt { 5 }  C)  108 \sqrt { 3 }  D) 6 <div style=padding-top: 35px>

A) 108
B) 656 \sqrt { 5 }
C) 1083108 \sqrt { 3 }
D) 6
Question
Plot the point.

- (1,0)( - 1,0 )
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the point.

- (2,6)(-2,6)

 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Tell in which quadrant or on what coordinate axis the point lies.
(-7, 0)

A) x-axis
B) Quadrant II
C) Quadrant I
D) y-axis
Question
Plot the point.

- (3,6)( 3,6 )
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0,8);P2=(5,8)\mathrm { P } _ { 1 } = ( 0,8 ) ; \mathrm { P } _ { 2 } = ( - 5,8 )

A) 89\sqrt { 89 }
B) 25
C) 5
D) 8
Question
Tell in which quadrant or on what coordinate axis the point lies.
(0, -6)

A) x-axis
B) y-axis
C) Quadrant I
D) Quadrant II
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(4,3);P2=(2,11)\mathrm { P } _ { 1 } = ( 4,3 ) ; \mathrm { P } _ { 2 } = ( - 2,11 )

A) 100
B) 20
C) 11
D) 10
Question
Tell in which quadrant or on what coordinate axis the point lies.
(12, -13)

A) Quadrant II
B) Quadrant I
C) Quadrant III
D) Quadrant IV
Question
Plot the point.

- (0,3)( 0 , - 3 )
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 6 B)  2 \sqrt { 5 }  C)  12 \sqrt { 3 }  D) 12 <div style=padding-top: 35px>

A) 6
B) 252 \sqrt { 5 }
C) 12312 \sqrt { 3 }
D) 12
Question
Tell in which quadrant or on what coordinate axis the point lies.
(6, 17)

A) Quadrant II
B) Quadrant I
C) Quadrant III
D) Quadrant IV
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 0 B) 2 C) 1 D)  \sqrt { 5 }  <div style=padding-top: 35px>

A) 0
B) 2
C) 1
D) 5\sqrt { 5 }
Question
Decide whether or not the points are the vertices of a right triangle.
(1, -3), (7, -1), (13, -8)

A) Yes
B) No
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(5x,6);P2=(6x,7)\mathrm { P } _ { 1 } = ( 5 \mathrm { x } , 6 ) ; \mathrm { P } _ { 2 } = ( 6 \mathrm { x } , 7 )

A) (11x2,132)\left( \frac { 11 x } { 2 } , \frac { 13 } { 2 } \right)
B) (x,1)( x , 1 )
C) (11x,13)( 11 \mathrm { x } , 13 )
D) (13x2,112)\left( \frac { 13 x } { 2 } , \frac { 11 } { 2 } \right)
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0.3,0.2);P2=(2.1,1.3)\mathrm { P } _ { 1 } = ( 0.3 , - 0.2 ) ; \mathrm { P } _ { 2 } = ( 2.1 , - 1.3 ) Round to three decimal places, if necessary.

A) 2.212.21
B) 2.112.11
C) 6.6716.671
D) 14.514.5
Question
Solve the problem.

-Find all values of k so that the given points are 29\sqrt { 29 } units apart. (-5, 5), (k, 0)

A) 7
B) 3, 7
C) -3, -7
D) -7
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(6,4);P2=(9,8)\mathrm { P } _ { 1 } = ( - 6,4 ) ; \mathrm { P } _ { 2 } = ( 9,8 )

A) (32,6)\left( \frac { 3 } { 2 } , 6 \right)
B) (152,2)\left( - \frac { 15 } { 2 } , - 2 \right)
C) (3,12)( 3,12 )
D) (15,4)( - 15 , - 4 )
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(3,1);P2=(5,3)\mathrm { P } _ { 1 } = ( - 3 , - 1 ) ; \mathrm { P } _ { 2 } = ( 5,3 )

A) 48
B) 454 \sqrt { 5 }
C) 4
D) 48348 \sqrt { 3 }
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(0.8,0.2);P2=(2.8,1.7)\mathrm { P } _ { 1 } = ( - 0.8,0.2 ) ; \mathrm { P } _ { 2 } = ( - 2.8 , - 1.7 )

A) (0.75,1.8)( - 0.75 , - 1.8 )
B) (1.8,0.75)( - 1.8 , - 0.75 )
C) (1,0.95)( - 1 , - 0.95 )
D) (0.95,1)( - 0.95 , - 1 )
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(a,2);P2=(0,3)\mathrm { P } _ { 1 } = ( \mathrm { a } , 2 ) ; \mathrm { P } _ { 2 } = ( 0,3 )

A) (a,52)\left( a , \frac { 5 } { 2 } \right)
B) (a2,1)\left( - \frac { a } { 2 } , 1 \right)
C) (a2,52)\left( \frac { \mathrm { a } } { 2 } , \frac { 5 } { 2 } \right)
D) (a,5)( a , 5 )
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(7,1);P2=(16,16)P _ { 1 } = ( 7,1 ) ; P _ { 2 } = ( - 16 , - 16 )

A) (9,15)( - 9 , - 15 )
B) (9,15)( 9,15 )
C) (92,152)\left( - \frac { 9 } { 2 } , - \frac { 15 } { 2 } \right)
D) (232,172)\left( \frac { 23 } { 2 } , \frac { 17 } { 2 } \right)
Question
Solve the problem.
Find all the points having an x-coordinate of 9 whose distance from the point (3, -2) is 10.

A) (9, -12), (9, 8)
B) (9, 13), (9, -7)
C) (9, 2), (9, -4)
D) (9, 6), (9, -10)
Question
Solve the problem.

-Find the area of the right triangle ABC with A = (-2, 7), B = (7, -1), C = (3, 9).

A) 292\frac { \sqrt { 29 } } { 2 } square units
B) 29 square units
C) 58 square units
D) 582\frac { \sqrt { 58 } } { 2 } square units
Question
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(6,5);P2=(8,1)\mathrm { P } _ { 1 } = ( 6,5 ) ; \mathrm { P } _ { 2 } = ( 8,1 )

A) (2,4)( - 2,4 )
B) (3,7)( 3,7 )
C) (14,6)( 14,6 )
D) (7,3)( 7,3 )
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(5,7);P2=(7,1)\mathrm { P } _ { 1 } = ( 5 , - 7 ) ; \mathrm { P } _ { 2 } = ( 7 , - 1 )

A) 4
B) 32
C) 2102 \sqrt { 10 }
D) 32232 \sqrt { 2 }
Question
Decide whether or not the points are the vertices of a right triangle.
(-1, 7), (6, 7), (6, 9)

A) Yes
B) No
Question
Solve the problem.

-Find the length of each side of the triangle determined by the three points P1,P2, and P3\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \text {, and } \mathrm { P } _ { 3 } . State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both. P1=(5,4),P2=(3,4),P3=(0,1)\mathrm { P } _ { 1 } = ( - 5 , - 4 ) , \mathrm { P } _ { 2 } = ( - 3,4 ) , \mathrm { P } _ { 3 } = ( 0 , - 1 )

A) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } neither

B) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } right triangle

C) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } both

D) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } isosceles triangle
Question
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(6,1);P2=(2,2)\mathrm { P } _ { 1 } = ( 6,1 ) ; \mathrm { P } _ { 2 } = ( - 2 , - 2 )

A) 5
B) 55\sqrt { 55 }
C) 24
D) 73\sqrt { 73 }
Question
Decide whether or not the points are the vertices of a right triangle.
(6, 12), (8, 16), (10, 15)

A) No
B) Yes
Question
Solve the problem.
A middle school's baseball playing field is a square, 55 feet on a side. How far is it directly from home plate to second base (the diagonal of the square)? If necessary, round to the nearest foot.

A) 85 feet
B) 79 feet
C) 78 feet
D) 77 feet
Question
Decide whether or not the points are the vertices of a right triangle.
(8, -7), (14, -5), (13, -10)

A) Yes
B) No
Question
Solve the problem.

-A motorcycle and a car leave an intersection at the same time. The motorcycle heads north at an average speed of 20 miles per hour, while the car heads east at an average speed of 48 miles per hour. Find an expression for
Their distance apart in miles at the end of t hours.

A) 68\sqrt { 68 } miles
B) 2t132 \mathrm { t } \sqrt { 13 } miles
C) 52t52 \mathrm { t } miles
D) 52t52 \sqrt { t } miles
Question
Solve the problem.
If (7, -6) is the endpoint of a line segment, and (2, -5) is its midpoint, find the other endpoint.

A) (-3, -4)
B) (9, -16)
C) (-3, -7)
D) (17, -8)
Question
Determine whether the given point is on the graph of the equation.

-Equation: x2y2=16x ^ { 2 } - y ^ { 2 } = 16
Point: (22,22)( 2 \sqrt { 2 } , 2 \sqrt { 2 } )

A) Yes
B) No
Question
Solve the problem.
If (-7, -3) is the endpoint of a line segment, and (-3, -5) is its midpoint, find the other endpoint.

A) (-11, 5)
B) (-15, 1)
C) (1, -7)
D) (1, -1)
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (-8, 0), (0, 8) B) (-8, 0), (0, -8), (0, 0), (0, 8), (8, 0) C) (0, 8), (8, 0) D) (-8, 0), (0, -8), (0, 8), (8, 0) <div style=padding-top: 35px>

A) (-8, 0), (0, 8)
B) (-8, 0), (0, -8), (0, 0), (0, 8), (8, 0)
C) (0, 8), (8, 0)
D) (-8, 0), (0, -8), (0, 8), (8, 0)
Question
Graph the equation by plotting points.

- y=3x+6y=3 x+6

 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
If (1, -4) is the endpoint of a line segment, and (3, 1) is its midpoint, find the other endpoint.

A) (11, 0)
B) (5, 6)
C) (5, -9)
D) (-3, -14)
Question
List the intercepts of the graph.

- <strong>List the intercepts of the graph.  - </strong> A)  \left( 0 , - \frac { \pi } { 2 } \right) , ( 0 , - 2 ) , \left( 0 , \frac { \pi } { 2 } \right)  B)  \left( - \frac { \pi } { 2 } , 0 \right) , ( - 2,0 ) , \left( \frac { \pi } { 2 } , 0 \right)  C)  \left( 0 , - \frac { \pi } { 2 } \right) , ( - 2,0 ) , \left( 0 , \frac { \pi } { 2 } \right)  D)  \left( - \frac { \pi } { 2 } , 0 \right) , ( 0 , - 2 ) , \left( \frac { \pi } { 2 } , 0 \right)  <div style=padding-top: 35px>

A) (0,π2),(0,2),(0,π2)\left( 0 , - \frac { \pi } { 2 } \right) , ( 0 , - 2 ) , \left( 0 , \frac { \pi } { 2 } \right)
B) (π2,0),(2,0),(π2,0)\left( - \frac { \pi } { 2 } , 0 \right) , ( - 2,0 ) , \left( \frac { \pi } { 2 } , 0 \right)
C) (0,π2),(2,0),(0,π2)\left( 0 , - \frac { \pi } { 2 } \right) , ( - 2,0 ) , \left( 0 , \frac { \pi } { 2 } \right)
D) (π2,0),(0,2),(π2,0)\left( - \frac { \pi } { 2 } , 0 \right) , ( 0 , - 2 ) , \left( \frac { \pi } { 2 } , 0 \right)
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, 2) B) (0, -2) C) (-2, 0) D) (2, 0) <div style=padding-top: 35px>

A) (0, 2)
B) (0, -2)
C) (-2, 0)
D) (2, 0)
Question
Solve the problem.
If (5, 3) is the endpoint of a line segment, and (1, 1) is its midpoint, find the other endpoint.

A) (13, 7)
B) (-3, 5)
C) (1, -5)
D) (-3, -1)
Question
Solve the problem.

-If (3,b)( 3 , b ) is a point on the graph of 3x2y=173 x - 2 y = 17 , what is bb ?

A) 4- 4

B) 113\frac { 11 } { 3 }

C) 233\frac { 23 } { 3 }

D) 4
Question
Determine whether the given point is on the graph of the equation.

-Equation: y y=x3xy = x ^ { 3 } - \sqrt { x } Point: (1, 0)

A) Yes
B) No
Question
Graph the equation by plotting points.

- y=x2+4y=-x^{2}+4

 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
If (a, 3) is a point on the graph of y = 2x - 5, what is a?

A) -1
B) -4
C) 4
D) 1
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, -2), (8, 0), (0, 4) B) (0, -2), (0, 8), (4, 0) C) (-2, 0), (0, 8), (4, 0) D) (-2, 0), (0, 8), (0, 4) <div style=padding-top: 35px>

A) (0, -2), (8, 0), (0, 4)
B) (0, -2), (0, 8), (4, 0)
C) (-2, 0), (0, 8), (4, 0)
D) (-2, 0), (0, 8), (0, 4)
Question
Graph the equation by plotting points.

- y=x+5y=x+5

 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, -1), (0, 1) B) (0, -1), (1, 0) C) (-1, 0), (0, 1) D) (-1, 0), (1, 0) <div style=padding-top: 35px>

A) (0, -1), (0, 1)
B) (0, -1), (1, 0)
C) (-1, 0), (0, 1)
D) (-1, 0), (1, 0)
Question
Graph the equation by plotting points.

- 4x+3y=124 x+3 y=12

 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.

-The medians of a triangle intersect at a point. The distance from the vertex to the point is exactly two-thirds of the distance from the vertex to the midpoint of the opposite side. Find the exact distance of that point from the
Vertex A(3, 4) of a triangle, given that the other two vertices are at (0, 0) and (8, 0).

A) 83\frac { 8 } { 3 }
B) 173\frac { \sqrt { 17 } } { 3 }
C) 2173\frac { 2 \sqrt { 17 } } { 3 }
D) 2
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, 1) B) (1, 0) C) (0, 0) D) (1, 1) <div style=padding-top: 35px>

A) (0, 1)
B) (1, 0)
C) (0, 0)
D) (1, 1)
Question
Graph the equation by plotting points.

- x2+4y=4x^{2}+4 y=4


 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercepts:  ( 3,0 )  and  ( - 3,0  symmetric with respect to  \mathrm { y } -axis B) intercepts:  ( 0,3 )  and  ( 0 , - 3 )  symmetric with respect to origin C) intercepts:  ( 3,0 )  and  ( - 3,0 )  symmetric with respect to  \mathrm { x } -axis,  \mathrm { y } -axis, and origin D) intercepts:  ( 0,3 )  and  ( 0 , - 3 )  symmetric with respect to  x -axis,  y -axis, and origin <div style=padding-top: 35px>

A) intercepts: (3,0)( 3,0 ) and (3,0( - 3,0
symmetric with respect to y\mathrm { y } -axis
B) intercepts: (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
symmetric with respect to origin
C) intercepts: (3,0)( 3,0 ) and (3,0)( - 3,0 )
symmetric with respect to x\mathrm { x } -axis, y\mathrm { y } -axis, and origin
D) intercepts: (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
symmetric with respect to xx -axis, yy -axis, and origin
Question
Plot the point A. Plot the point B that has the given symmetry with point A.

-A = (0, 2); B is symmetric to A with respect to the origin <strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
List the intercepts for the graph of the equation.

- y2=x+49y ^ { 2 } = x + 49

A) (0, -7), (49, 0), (0, 7)
B) (-7, 0), (0, -49), (7, 0)
C) (7, 0), (0, 49), (0, -49)
D) (0, -7), (-49, 0), (0, 7)
Question
List the intercepts for the graph of the equation.

- y=x2+7x+10y = x ^ { 2 } + 7 x + 10

A) (-2, 0), (-5, 0), (0, 10)
B) (0, 2), (0, 5), (10, 0)
C) (0, -2), (0, -5), (10, 0)
D) (2, 0), (5, 0), (0, 10)
Question
List the intercepts for the graph of the equation.

- y=7xx2+49y = \frac { 7 x } { x ^ { 2 } + 49 }

A) (0, -7), (0, 0), (0, 7)
B) (-7, 0), (0, 0), (7, 0)
C) (-49, 0), (0, 0), (49, 0)
D) (0, 0)
Question
List the intercepts for the graph of the equation.

- y=x2+25y = x ^ { 2 } + 25

A) (0, 25)
B) (0, 25), (-5, 0), (5, 0)
C) (25, 0)
D) (25, 0), (0, -5), (0, 5)
Question
List the intercepts for the graph of the equation.

- y=x293x4y = \frac { x ^ { 2 } - 9 } { 3 x ^ { 4 } }

A) (0, 0)
B) (-3, 0), (3, 0)
C) (0, -3), (0, 3)
D) (-9, 0), (0, 0), (9, 0)
Question
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercepts:  ( 0 , - 1 )  and  ( 0,1 )  symmetric with respect to  y -axis B) intercepts:  ( 0 , - 1 )  and  ( 0,1 )  symmetric with respect to  x -axis,  y -axis, and origin C) intercepts:  ( - 1,0 )  and  ( 1,0 )  symmetric with respect to origin D) intercepts:  ( - 1,0 )  and  ( 1,0 )  symmetric with respect to  x -axis,  y -axis, and origin <div style=padding-top: 35px>

A) intercepts: (0,1)( 0 , - 1 ) and (0,1)( 0,1 )
symmetric with respect to yy -axis
B) intercepts: (0,1)( 0 , - 1 ) and (0,1)( 0,1 )
symmetric with respect to xx -axis, yy -axis, and origin
C) intercepts: (1,0)( - 1,0 ) and (1,0)( 1,0 )
symmetric with respect to origin
D) intercepts: (1,0)( - 1,0 ) and (1,0)( 1,0 )
symmetric with respect to xx -axis, yy -axis, and origin
Question
Plot the point A. Plot the point B that has the given symmetry with point A.

-A = (2, -5); B is symmetric to A with respect to the x-axis <strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (4, 0), (0, 4), (0, 1), (0, -5) B) (-4, 0), (1, 0), (5, 0), (0, 4) C) (4, 0), (0, -4), (0, 1), (0, 5) D) (4, 0), (1, 0) (-5, 0), (0, 4) <div style=padding-top: 35px>

A) (4, 0), (0, 4), (0, 1), (0, -5)
B) (-4, 0), (1, 0), (5, 0), (0, 4)
C) (4, 0), (0, -4), (0, 1), (0, 5)
D) (4, 0), (1, 0) (-5, 0), (0, 4)
Question
List the intercepts for the graph of the equation.

- y=x3y = \sqrt [ 3 ] { x }

A) (0, 1)
B) (0, 0)
C) (1, 1)
D) (1, 0)
Question
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercept:  ( 0,9 )  symmetric with respect to  x -axis  B) intercept:  ( 9,0 )  no symmetry  C) intercept:  ( 0,9 )  no symmetry  D) intercept:  ( 9,0 )  symmetric with respect to  \mathrm { y } -axis <div style=padding-top: 35px>

A) intercept: (0,9)( 0,9 )
symmetric with respect to xx -axis

B) intercept: (9,0)( 9,0 )
no symmetry

C) intercept: (0,9)( 0,9 )
no symmetry

D) intercept: (9,0)( 9,0 )
symmetric with respect to y\mathrm { y } -axis
Question
List the intercepts for the graph of the equation.

- 4x2+16y2=644 x ^ { 2 } + 16 y ^ { 2 } = 64

A) (-16, 0), (0, -4), (0, 4), (16, 0)
B) (-4, 0), (-16, 0), (16, 0), (4, 0)
C) (-4, 0), (0, -2), (0, 2), (4, 0)
D) (-2, 0), (-4, 0), (4, 0), (2, 0)
Question
List the intercepts for the graph of the equation.
y = x - 6

A) (6, 0), (0, -6)
B) (6, 0), (0, 6)
C) (-6, 0), (0, 6)
D) (-6, 0), (0, -6)
Question
List the intercepts for the graph of the equation.

- y=x41y = x ^ { 4 } - 1

A) (0, 1), (-1, 0), (1, 0)
B) (0, -1)
C) (0, 1)
D) (0, -1), (-1, 0), (1, 0)
Question
List the intercepts for the graph of the equation.

- y=x327y = x ^ { 3 } - 27

A) (0, -27), (3, 0)
B) (-27, 0), (0, 3)
C) (0, -3), (-3, 0)
D) (0, -3), (0, 3)
Question
List the intercepts for the graph of the equation.

- 9x2+y2=99 x ^ { 2 } + y ^ { 2 } = 9

A) (-9, 0), (0, -1), (0, 1), (9, 0)
B) (-1, 0), (0, -3), (0, 3), (1, 0)
C) (-1, 0), (0, -9), (0, 9), (1, 0)
D) (-3, 0), (0, -1), (0, 1), (3, 0)
Question
List the intercepts for the graph of the equation.

- x2+y25=0x ^ { 2 } + y - 25 = 0

A) (0, -5), (25, 0), (0, 5)
B) (-5, 0), (0, -25), (5, 0)
C) (5, 0), (0, 25), (0, -25)
D) (-5, 0), (0, 25), (5, 0)
Question
List the intercepts for the graph of the equation.
y = 2x

A) (2, 0)
B) (0, 0)
C) (0, 2)
D) (2, 2)
Question
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercept:  ( 0,3 )  symmetric with respect to  \mathrm { y } -axis  B) intercept:  ( 3,0 )  symmetric with respect to  \mathrm { y } -axis  C) intercept:  ( 3,0 )  symmetric with respect to  x -axis  D) intercept:  ( 0,3 )  symmetric with respect to origin <div style=padding-top: 35px>

A) intercept: (0,3)( 0,3 )
symmetric with respect to y\mathrm { y } -axis

B) intercept: (3,0)( 3,0 )
symmetric with respect to y\mathrm { y } -axis

C) intercept: (3,0)( 3,0 )
symmetric with respect to xx -axis

D) intercept: (0,3)( 0,3 )
symmetric with respect to origin
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/228
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Review
1
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0,0);P2=(9,5)\mathrm { P } _ { 1 } = ( 0,0 ) ; \mathrm { P } _ { 2 } = ( - 9,5 )

A) 4
B) 106\sqrt { 106 }
C) 14\sqrt { 14 }
D) 106
106\sqrt { 106 }
2
Plot the point.

- (3,1)( - 3 , - 1 )

 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)

A)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)
B)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)

C)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)
D)
 <strong>Plot the point.  - ( - 3 , - 1 )     </strong> A)   B)    C)   D)

3
Plot the point.

- (1,4)( 1 , - 4 )

 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)

A)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)
B)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)
C)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)
D)
 <strong>Plot the point.  - ( 1 , - 4 )     </strong> A)   B)   C)   D)

4
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A)  \sqrt { 15 }  B) 56 C) 1 D)  \sqrt { 113 }

A) 15\sqrt { 15 }
B) 56
C) 1
D) 113\sqrt { 113 }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
5
Tell in which quadrant or on what coordinate axis the point lies.
(-16, 14)

A) Quadrant III
B) Quadrant II
C) Quadrant I
D) Quadrant IV
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
6
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(3,3);P2=(3,2)P _ { 1 } = ( - 3 , - 3 ) ; P _ { 2 } = ( - 3,2 )

A) 6
B) 5\sqrt { 5 }
C) 5
D) 4
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
7
Tell in which quadrant or on what coordinate axis the point lies.
(-10, -6)

A) Quadrant IV
B) Quadrant II
C) Quadrant III
D) Quadrant I
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
8
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 108 B)  6 \sqrt { 5 }  C)  108 \sqrt { 3 }  D) 6

A) 108
B) 656 \sqrt { 5 }
C) 1083108 \sqrt { 3 }
D) 6
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
9
Plot the point.

- (1,0)( - 1,0 )
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)

A)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)
B)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)
C)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)
D)
 <strong>Plot the point.  - ( - 1,0 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
10
Plot the point.

- (2,6)(-2,6)

 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)

A)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)
B)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)
C)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)
D)
 <strong>Plot the point.  - (-2,6)    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
11
Tell in which quadrant or on what coordinate axis the point lies.
(-7, 0)

A) x-axis
B) Quadrant II
C) Quadrant I
D) y-axis
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
12
Plot the point.

- (3,6)( 3,6 )
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)

A)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)
B)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)
C)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)
D)
 <strong>Plot the point.  - ( 3,6 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
13
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0,8);P2=(5,8)\mathrm { P } _ { 1 } = ( 0,8 ) ; \mathrm { P } _ { 2 } = ( - 5,8 )

A) 89\sqrt { 89 }
B) 25
C) 5
D) 8
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
14
Tell in which quadrant or on what coordinate axis the point lies.
(0, -6)

A) x-axis
B) y-axis
C) Quadrant I
D) Quadrant II
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
15
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(4,3);P2=(2,11)\mathrm { P } _ { 1 } = ( 4,3 ) ; \mathrm { P } _ { 2 } = ( - 2,11 )

A) 100
B) 20
C) 11
D) 10
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
16
Tell in which quadrant or on what coordinate axis the point lies.
(12, -13)

A) Quadrant II
B) Quadrant I
C) Quadrant III
D) Quadrant IV
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
17
Plot the point.

- (0,3)( 0 , - 3 )
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)

A)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)
B)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)
C)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)
D)
 <strong>Plot the point.  - ( 0 , - 3 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
18
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 6 B)  2 \sqrt { 5 }  C)  12 \sqrt { 3 }  D) 12

A) 6
B) 252 \sqrt { 5 }
C) 12312 \sqrt { 3 }
D) 12
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
19
Tell in which quadrant or on what coordinate axis the point lies.
(6, 17)

A) Quadrant II
B) Quadrant I
C) Quadrant III
D) Quadrant IV
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
20
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- <strong>Find the distance d(  \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 }  .  - </strong> A) 0 B) 2 C) 1 D)  \sqrt { 5 }

A) 0
B) 2
C) 1
D) 5\sqrt { 5 }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
21
Decide whether or not the points are the vertices of a right triangle.
(1, -3), (7, -1), (13, -8)

A) Yes
B) No
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
22
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(5x,6);P2=(6x,7)\mathrm { P } _ { 1 } = ( 5 \mathrm { x } , 6 ) ; \mathrm { P } _ { 2 } = ( 6 \mathrm { x } , 7 )

A) (11x2,132)\left( \frac { 11 x } { 2 } , \frac { 13 } { 2 } \right)
B) (x,1)( x , 1 )
C) (11x,13)( 11 \mathrm { x } , 13 )
D) (13x2,112)\left( \frac { 13 x } { 2 } , \frac { 11 } { 2 } \right)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
23
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(0.3,0.2);P2=(2.1,1.3)\mathrm { P } _ { 1 } = ( 0.3 , - 0.2 ) ; \mathrm { P } _ { 2 } = ( 2.1 , - 1.3 ) Round to three decimal places, if necessary.

A) 2.212.21
B) 2.112.11
C) 6.6716.671
D) 14.514.5
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
24
Solve the problem.

-Find all values of k so that the given points are 29\sqrt { 29 } units apart. (-5, 5), (k, 0)

A) 7
B) 3, 7
C) -3, -7
D) -7
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
25
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(6,4);P2=(9,8)\mathrm { P } _ { 1 } = ( - 6,4 ) ; \mathrm { P } _ { 2 } = ( 9,8 )

A) (32,6)\left( \frac { 3 } { 2 } , 6 \right)
B) (152,2)\left( - \frac { 15 } { 2 } , - 2 \right)
C) (3,12)( 3,12 )
D) (15,4)( - 15 , - 4 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
26
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(3,1);P2=(5,3)\mathrm { P } _ { 1 } = ( - 3 , - 1 ) ; \mathrm { P } _ { 2 } = ( 5,3 )

A) 48
B) 454 \sqrt { 5 }
C) 4
D) 48348 \sqrt { 3 }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
27
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(0.8,0.2);P2=(2.8,1.7)\mathrm { P } _ { 1 } = ( - 0.8,0.2 ) ; \mathrm { P } _ { 2 } = ( - 2.8 , - 1.7 )

A) (0.75,1.8)( - 0.75 , - 1.8 )
B) (1.8,0.75)( - 1.8 , - 0.75 )
C) (1,0.95)( - 1 , - 0.95 )
D) (0.95,1)( - 0.95 , - 1 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
28
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(a,2);P2=(0,3)\mathrm { P } _ { 1 } = ( \mathrm { a } , 2 ) ; \mathrm { P } _ { 2 } = ( 0,3 )

A) (a,52)\left( a , \frac { 5 } { 2 } \right)
B) (a2,1)\left( - \frac { a } { 2 } , 1 \right)
C) (a2,52)\left( \frac { \mathrm { a } } { 2 } , \frac { 5 } { 2 } \right)
D) (a,5)( a , 5 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
29
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(7,1);P2=(16,16)P _ { 1 } = ( 7,1 ) ; P _ { 2 } = ( - 16 , - 16 )

A) (9,15)( - 9 , - 15 )
B) (9,15)( 9,15 )
C) (92,152)\left( - \frac { 9 } { 2 } , - \frac { 15 } { 2 } \right)
D) (232,172)\left( \frac { 23 } { 2 } , \frac { 17 } { 2 } \right)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
30
Solve the problem.
Find all the points having an x-coordinate of 9 whose distance from the point (3, -2) is 10.

A) (9, -12), (9, 8)
B) (9, 13), (9, -7)
C) (9, 2), (9, -4)
D) (9, 6), (9, -10)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
31
Solve the problem.

-Find the area of the right triangle ABC with A = (-2, 7), B = (7, -1), C = (3, 9).

A) 292\frac { \sqrt { 29 } } { 2 } square units
B) 29 square units
C) 58 square units
D) 582\frac { \sqrt { 58 } } { 2 } square units
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
32
Find the midpoint of the line segment joining the points P1 and P2P _ { 1 } \text { and } P _ { 2 }

- P1=(6,5);P2=(8,1)\mathrm { P } _ { 1 } = ( 6,5 ) ; \mathrm { P } _ { 2 } = ( 8,1 )

A) (2,4)( - 2,4 )
B) (3,7)( 3,7 )
C) (14,6)( 14,6 )
D) (7,3)( 7,3 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
33
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(5,7);P2=(7,1)\mathrm { P } _ { 1 } = ( 5 , - 7 ) ; \mathrm { P } _ { 2 } = ( 7 , - 1 )

A) 4
B) 32
C) 2102 \sqrt { 10 }
D) 32232 \sqrt { 2 }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
34
Decide whether or not the points are the vertices of a right triangle.
(-1, 7), (6, 7), (6, 9)

A) Yes
B) No
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the problem.

-Find the length of each side of the triangle determined by the three points P1,P2, and P3\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \text {, and } \mathrm { P } _ { 3 } . State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both. P1=(5,4),P2=(3,4),P3=(0,1)\mathrm { P } _ { 1 } = ( - 5 , - 4 ) , \mathrm { P } _ { 2 } = ( - 3,4 ) , \mathrm { P } _ { 3 } = ( 0 , - 1 )

A) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } neither

B) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=52\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = 5 \sqrt { 2 } right triangle

C) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } both

D) d(P1,P2)=217;d(P2,P3)=34;d(P1,P3)=34\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) = 2 \sqrt { 17 } ; \mathrm { d } \left( \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } ; \mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 3 } \right) = \sqrt { 34 } isosceles triangle
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
36
Find the distance d( d(P1,P2) between the points P1 and P2\mathrm { d } \left( \mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } \right) \text { between the points } \mathrm { P } _ { 1 } \text { and } \mathrm { P } _ { 2 } .

- P1=(6,1);P2=(2,2)\mathrm { P } _ { 1 } = ( 6,1 ) ; \mathrm { P } _ { 2 } = ( - 2 , - 2 )

A) 5
B) 55\sqrt { 55 }
C) 24
D) 73\sqrt { 73 }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
37
Decide whether or not the points are the vertices of a right triangle.
(6, 12), (8, 16), (10, 15)

A) No
B) Yes
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the problem.
A middle school's baseball playing field is a square, 55 feet on a side. How far is it directly from home plate to second base (the diagonal of the square)? If necessary, round to the nearest foot.

A) 85 feet
B) 79 feet
C) 78 feet
D) 77 feet
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
39
Decide whether or not the points are the vertices of a right triangle.
(8, -7), (14, -5), (13, -10)

A) Yes
B) No
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
40
Solve the problem.

-A motorcycle and a car leave an intersection at the same time. The motorcycle heads north at an average speed of 20 miles per hour, while the car heads east at an average speed of 48 miles per hour. Find an expression for
Their distance apart in miles at the end of t hours.

A) 68\sqrt { 68 } miles
B) 2t132 \mathrm { t } \sqrt { 13 } miles
C) 52t52 \mathrm { t } miles
D) 52t52 \sqrt { t } miles
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the problem.
If (7, -6) is the endpoint of a line segment, and (2, -5) is its midpoint, find the other endpoint.

A) (-3, -4)
B) (9, -16)
C) (-3, -7)
D) (17, -8)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
42
Determine whether the given point is on the graph of the equation.

-Equation: x2y2=16x ^ { 2 } - y ^ { 2 } = 16
Point: (22,22)( 2 \sqrt { 2 } , 2 \sqrt { 2 } )

A) Yes
B) No
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
43
Solve the problem.
If (-7, -3) is the endpoint of a line segment, and (-3, -5) is its midpoint, find the other endpoint.

A) (-11, 5)
B) (-15, 1)
C) (1, -7)
D) (1, -1)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
44
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (-8, 0), (0, 8) B) (-8, 0), (0, -8), (0, 0), (0, 8), (8, 0) C) (0, 8), (8, 0) D) (-8, 0), (0, -8), (0, 8), (8, 0)

A) (-8, 0), (0, 8)
B) (-8, 0), (0, -8), (0, 0), (0, 8), (8, 0)
C) (0, 8), (8, 0)
D) (-8, 0), (0, -8), (0, 8), (8, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
45
Graph the equation by plotting points.

- y=3x+6y=3 x+6

 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation by plotting points.  - y=3 x+6     </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
46
Solve the problem.
If (1, -4) is the endpoint of a line segment, and (3, 1) is its midpoint, find the other endpoint.

A) (11, 0)
B) (5, 6)
C) (5, -9)
D) (-3, -14)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
47
List the intercepts of the graph.

- <strong>List the intercepts of the graph.  - </strong> A)  \left( 0 , - \frac { \pi } { 2 } \right) , ( 0 , - 2 ) , \left( 0 , \frac { \pi } { 2 } \right)  B)  \left( - \frac { \pi } { 2 } , 0 \right) , ( - 2,0 ) , \left( \frac { \pi } { 2 } , 0 \right)  C)  \left( 0 , - \frac { \pi } { 2 } \right) , ( - 2,0 ) , \left( 0 , \frac { \pi } { 2 } \right)  D)  \left( - \frac { \pi } { 2 } , 0 \right) , ( 0 , - 2 ) , \left( \frac { \pi } { 2 } , 0 \right)

A) (0,π2),(0,2),(0,π2)\left( 0 , - \frac { \pi } { 2 } \right) , ( 0 , - 2 ) , \left( 0 , \frac { \pi } { 2 } \right)
B) (π2,0),(2,0),(π2,0)\left( - \frac { \pi } { 2 } , 0 \right) , ( - 2,0 ) , \left( \frac { \pi } { 2 } , 0 \right)
C) (0,π2),(2,0),(0,π2)\left( 0 , - \frac { \pi } { 2 } \right) , ( - 2,0 ) , \left( 0 , \frac { \pi } { 2 } \right)
D) (π2,0),(0,2),(π2,0)\left( - \frac { \pi } { 2 } , 0 \right) , ( 0 , - 2 ) , \left( \frac { \pi } { 2 } , 0 \right)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
48
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, 2) B) (0, -2) C) (-2, 0) D) (2, 0)

A) (0, 2)
B) (0, -2)
C) (-2, 0)
D) (2, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the problem.
If (5, 3) is the endpoint of a line segment, and (1, 1) is its midpoint, find the other endpoint.

A) (13, 7)
B) (-3, 5)
C) (1, -5)
D) (-3, -1)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
50
Solve the problem.

-If (3,b)( 3 , b ) is a point on the graph of 3x2y=173 x - 2 y = 17 , what is bb ?

A) 4- 4

B) 113\frac { 11 } { 3 }

C) 233\frac { 23 } { 3 }

D) 4
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
51
Determine whether the given point is on the graph of the equation.

-Equation: y y=x3xy = x ^ { 3 } - \sqrt { x } Point: (1, 0)

A) Yes
B) No
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
52
Graph the equation by plotting points.

- y=x2+4y=-x^{2}+4

 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation by plotting points.  - y=-x^{2}+4    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
53
Solve the problem.
If (a, 3) is a point on the graph of y = 2x - 5, what is a?

A) -1
B) -4
C) 4
D) 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
54
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, -2), (8, 0), (0, 4) B) (0, -2), (0, 8), (4, 0) C) (-2, 0), (0, 8), (4, 0) D) (-2, 0), (0, 8), (0, 4)

A) (0, -2), (8, 0), (0, 4)
B) (0, -2), (0, 8), (4, 0)
C) (-2, 0), (0, 8), (4, 0)
D) (-2, 0), (0, 8), (0, 4)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
55
Graph the equation by plotting points.

- y=x+5y=x+5

 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation by plotting points.  - y=x+5     </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
56
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, -1), (0, 1) B) (0, -1), (1, 0) C) (-1, 0), (0, 1) D) (-1, 0), (1, 0)

A) (0, -1), (0, 1)
B) (0, -1), (1, 0)
C) (-1, 0), (0, 1)
D) (-1, 0), (1, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
57
Graph the equation by plotting points.

- 4x+3y=124 x+3 y=12

 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation by plotting points.  - 4 x+3 y=12     </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
58
Solve the problem.

-The medians of a triangle intersect at a point. The distance from the vertex to the point is exactly two-thirds of the distance from the vertex to the midpoint of the opposite side. Find the exact distance of that point from the
Vertex A(3, 4) of a triangle, given that the other two vertices are at (0, 0) and (8, 0).

A) 83\frac { 8 } { 3 }
B) 173\frac { \sqrt { 17 } } { 3 }
C) 2173\frac { 2 \sqrt { 17 } } { 3 }
D) 2
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
59
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (0, 1) B) (1, 0) C) (0, 0) D) (1, 1)

A) (0, 1)
B) (1, 0)
C) (0, 0)
D) (1, 1)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
60
Graph the equation by plotting points.

- x2+4y=4x^{2}+4 y=4


 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation by plotting points.  - x^{2}+4 y=4     </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
61
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercepts:  ( 3,0 )  and  ( - 3,0  symmetric with respect to  \mathrm { y } -axis B) intercepts:  ( 0,3 )  and  ( 0 , - 3 )  symmetric with respect to origin C) intercepts:  ( 3,0 )  and  ( - 3,0 )  symmetric with respect to  \mathrm { x } -axis,  \mathrm { y } -axis, and origin D) intercepts:  ( 0,3 )  and  ( 0 , - 3 )  symmetric with respect to  x -axis,  y -axis, and origin

A) intercepts: (3,0)( 3,0 ) and (3,0( - 3,0
symmetric with respect to y\mathrm { y } -axis
B) intercepts: (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
symmetric with respect to origin
C) intercepts: (3,0)( 3,0 ) and (3,0)( - 3,0 )
symmetric with respect to x\mathrm { x } -axis, y\mathrm { y } -axis, and origin
D) intercepts: (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
symmetric with respect to xx -axis, yy -axis, and origin
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
62
Plot the point A. Plot the point B that has the given symmetry with point A.

-A = (0, 2); B is symmetric to A with respect to the origin <strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)

A)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)
B)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)
C)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)
D)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (0, 2); B is symmetric to A with respect to the origin  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
63
List the intercepts for the graph of the equation.

- y2=x+49y ^ { 2 } = x + 49

A) (0, -7), (49, 0), (0, 7)
B) (-7, 0), (0, -49), (7, 0)
C) (7, 0), (0, 49), (0, -49)
D) (0, -7), (-49, 0), (0, 7)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
64
List the intercepts for the graph of the equation.

- y=x2+7x+10y = x ^ { 2 } + 7 x + 10

A) (-2, 0), (-5, 0), (0, 10)
B) (0, 2), (0, 5), (10, 0)
C) (0, -2), (0, -5), (10, 0)
D) (2, 0), (5, 0), (0, 10)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
65
List the intercepts for the graph of the equation.

- y=7xx2+49y = \frac { 7 x } { x ^ { 2 } + 49 }

A) (0, -7), (0, 0), (0, 7)
B) (-7, 0), (0, 0), (7, 0)
C) (-49, 0), (0, 0), (49, 0)
D) (0, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
66
List the intercepts for the graph of the equation.

- y=x2+25y = x ^ { 2 } + 25

A) (0, 25)
B) (0, 25), (-5, 0), (5, 0)
C) (25, 0)
D) (25, 0), (0, -5), (0, 5)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
67
List the intercepts for the graph of the equation.

- y=x293x4y = \frac { x ^ { 2 } - 9 } { 3 x ^ { 4 } }

A) (0, 0)
B) (-3, 0), (3, 0)
C) (0, -3), (0, 3)
D) (-9, 0), (0, 0), (9, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
68
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercepts:  ( 0 , - 1 )  and  ( 0,1 )  symmetric with respect to  y -axis B) intercepts:  ( 0 , - 1 )  and  ( 0,1 )  symmetric with respect to  x -axis,  y -axis, and origin C) intercepts:  ( - 1,0 )  and  ( 1,0 )  symmetric with respect to origin D) intercepts:  ( - 1,0 )  and  ( 1,0 )  symmetric with respect to  x -axis,  y -axis, and origin

A) intercepts: (0,1)( 0 , - 1 ) and (0,1)( 0,1 )
symmetric with respect to yy -axis
B) intercepts: (0,1)( 0 , - 1 ) and (0,1)( 0,1 )
symmetric with respect to xx -axis, yy -axis, and origin
C) intercepts: (1,0)( - 1,0 ) and (1,0)( 1,0 )
symmetric with respect to origin
D) intercepts: (1,0)( - 1,0 ) and (1,0)( 1,0 )
symmetric with respect to xx -axis, yy -axis, and origin
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
69
Plot the point A. Plot the point B that has the given symmetry with point A.

-A = (2, -5); B is symmetric to A with respect to the x-axis <strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)

A)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)
B)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)
C)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)
D)
<strong>Plot the point A. Plot the point B that has the given symmetry with point A.  -A = (2, -5); B is symmetric to A with respect to the x-axis  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
70
List the intercepts of the graph.
<strong>List the intercepts of the graph.  </strong> A) (4, 0), (0, 4), (0, 1), (0, -5) B) (-4, 0), (1, 0), (5, 0), (0, 4) C) (4, 0), (0, -4), (0, 1), (0, 5) D) (4, 0), (1, 0) (-5, 0), (0, 4)

A) (4, 0), (0, 4), (0, 1), (0, -5)
B) (-4, 0), (1, 0), (5, 0), (0, 4)
C) (4, 0), (0, -4), (0, 1), (0, 5)
D) (4, 0), (1, 0) (-5, 0), (0, 4)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
71
List the intercepts for the graph of the equation.

- y=x3y = \sqrt [ 3 ] { x }

A) (0, 1)
B) (0, 0)
C) (1, 1)
D) (1, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
72
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercept:  ( 0,9 )  symmetric with respect to  x -axis  B) intercept:  ( 9,0 )  no symmetry  C) intercept:  ( 0,9 )  no symmetry  D) intercept:  ( 9,0 )  symmetric with respect to  \mathrm { y } -axis

A) intercept: (0,9)( 0,9 )
symmetric with respect to xx -axis

B) intercept: (9,0)( 9,0 )
no symmetry

C) intercept: (0,9)( 0,9 )
no symmetry

D) intercept: (9,0)( 9,0 )
symmetric with respect to y\mathrm { y } -axis
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
73
List the intercepts for the graph of the equation.

- 4x2+16y2=644 x ^ { 2 } + 16 y ^ { 2 } = 64

A) (-16, 0), (0, -4), (0, 4), (16, 0)
B) (-4, 0), (-16, 0), (16, 0), (4, 0)
C) (-4, 0), (0, -2), (0, 2), (4, 0)
D) (-2, 0), (-4, 0), (4, 0), (2, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
74
List the intercepts for the graph of the equation.
y = x - 6

A) (6, 0), (0, -6)
B) (6, 0), (0, 6)
C) (-6, 0), (0, 6)
D) (-6, 0), (0, -6)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
75
List the intercepts for the graph of the equation.

- y=x41y = x ^ { 4 } - 1

A) (0, 1), (-1, 0), (1, 0)
B) (0, -1)
C) (0, 1)
D) (0, -1), (-1, 0), (1, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
76
List the intercepts for the graph of the equation.

- y=x327y = x ^ { 3 } - 27

A) (0, -27), (3, 0)
B) (-27, 0), (0, 3)
C) (0, -3), (-3, 0)
D) (0, -3), (0, 3)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
77
List the intercepts for the graph of the equation.

- 9x2+y2=99 x ^ { 2 } + y ^ { 2 } = 9

A) (-9, 0), (0, -1), (0, 1), (9, 0)
B) (-1, 0), (0, -3), (0, 3), (1, 0)
C) (-1, 0), (0, -9), (0, 9), (1, 0)
D) (-3, 0), (0, -1), (0, 1), (3, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
78
List the intercepts for the graph of the equation.

- x2+y25=0x ^ { 2 } + y - 25 = 0

A) (0, -5), (25, 0), (0, 5)
B) (-5, 0), (0, -25), (5, 0)
C) (5, 0), (0, 25), (0, -25)
D) (-5, 0), (0, 25), (5, 0)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
79
List the intercepts for the graph of the equation.
y = 2x

A) (2, 0)
B) (0, 0)
C) (0, 2)
D) (2, 2)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
80
List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of
these.

- <strong>List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.  - </strong> A) intercept:  ( 0,3 )  symmetric with respect to  \mathrm { y } -axis  B) intercept:  ( 3,0 )  symmetric with respect to  \mathrm { y } -axis  C) intercept:  ( 3,0 )  symmetric with respect to  x -axis  D) intercept:  ( 0,3 )  symmetric with respect to origin

A) intercept: (0,3)( 0,3 )
symmetric with respect to y\mathrm { y } -axis

B) intercept: (3,0)( 3,0 )
symmetric with respect to y\mathrm { y } -axis

C) intercept: (3,0)( 3,0 )
symmetric with respect to xx -axis

D) intercept: (0,3)( 0,3 )
symmetric with respect to origin
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 228 flashcards in this deck.