Deck 14: Functions of Several Variables

Full screen (f)
exit full mode
Question
Find the standard equation of the sphere whose center is (6,5,7)( - 6 , - 5,7 ) and whose radius is 4.

A) (x+6)2+(y+5)2+(z7)2=16( x + 6 ) ^ { 2 } + ( y + 5 ) ^ { 2 } + ( z - 7 ) ^ { 2 } = 16
B) (x6)2+(y5)2+(z+7)2=16( x - 6 ) ^ { 2 } + ( y - 5 ) ^ { 2 } + ( z + 7 ) ^ { 2 } = 16
C) (x+6)+(y+5)+(z7)=4( x + 6 ) + ( y + 5 ) + ( z - 7 ) = 4
D) (x+6)2+(y+5)2+(z7)2=4( x + 6 ) ^ { 2 } + ( y + 5 ) ^ { 2 } + ( z - 7 ) ^ { 2 } = 4
E) (x6)+(y5)+(z+7)=4( x - 6 ) + ( y - 5 ) + ( z + 7 ) = 4
Use Space or
up arrow
down arrow
to flip the card.
Question
Find (x,y,z)( x , y , z ) if the midpoint of the line segment joining the two points (x,y,z)( x , y , z ) and (4,2,4)( 4 , - 2,4 ) is (1,3,1)( - 1,3 , - 1 ) .

A) (2,4,2)( 2,4,2 )
B) (32,12,32)\left( \frac { 3 } { 2 } , \frac { 1 } { 2 } , \frac { 3 } { 2 } \right)
C) (5,5,5)( 5 , - 5,5 )
D) (52,52,52)\left( - \frac { 5 } { 2 } , \frac { 5 } { 2 } , - \frac { 5 } { 2 } \right)
E) (6,8,6)( - 6,8 , - 6 )
Question
Sketch the trace of the intersection of plane y = 4 with the sphere: x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 .

A)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Describe the trace of the surface given by the function below y2+z2x2=1y ^ { 2 } + z ^ { 2 } - x ^ { 2 } = 1 in the xz-plane.

A)circle
B)parabola
C)line
D)ellipse
E)hyperbola
Question
Find the center and radius of the sphere whose equation is 2x2+2y2+2z28x+12y12z+43=02 x ^ { 2 } + 2 y ^ { 2 } + 2 z ^ { 2 } - 8 x + 12 y - 12 z + 43 = 0 . Round your answer to two decimal places, where applicable.

A)center: (2,3,3)( - 2,3 , - 3 ) ; radius: 0.71
B)center: (2,3,3)( 2 , - 3,3 ) ; radius: 0.71
C)center: (2,3,3)( 2 , - 3,3 ) ; radius: 0.50
D)center: (2,3,3)( - 2 , - 3,3 ) ; radius: 0.71
E)center: (2,3,3)( - 2,3 , - 3 ) ; radius: 0.50
Question
Identify the quadric surface. x2+y24+z2=1x ^ { 2 } + \frac { y ^ { 2 } } { 4 } + z ^ { 2 } = 1

A)The graph is hyperboloid of two sheets.
B)The graph is an ellipsoid.
C)The graph is an elliptic cone.
D)The graph is an elliptic paraboloid.
E)The graph is a hyperboloid of one sheet.
Question
Sketch the yz-trace of the equation: (x+2)2+(y3)2+(z+2)2=9( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9

A)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate the function at the given values of the independent variables. z=x3+2xy+3y2,x=9,y=7z = x ^ { 3 } + 2 x y + 3 y ^ { 2 } , \quad x = - 9 , y = 7

A) z=708z = - 708
B) z=102z = 102
C) z=600z = - 600
D) z=568z = - 568
E) z=174z = 174
Question
Find the coordinates of the point that is located six units behind of the yz-plane, six units to the left of the xz-plane, and seven units below of the xy-plane.

A) (6,6,7)( - 6 , - 6 , - 7 )
B) (6,6,7)( 6 , - 6 , - 7 )
C) (6,6,7)( 6,6 , - 7 )
D) (6,6,7)( - 6,6 , - 7 )
E) (6,6,7)( - 6,6,7 )
Question
Use the function q(p1,p2)=7p19p29p1+9p2q \left( p _ { 1 } , p _ { 2 } \right) = \frac { 7 p _ { 1 } - 9 p _ { 2 } } { - 9 p _ { 1 } + 9 p _ { 2 } } to find q(5,8)q ( - 5 , - 8 )

A) q(5,8)=2737q ( - 5 , - 8 ) = - \frac { 27 } { 37 }
B) q(5,8)=2737q ( - 5 , - 8 ) = \frac { 27 } { 37 }
C) q(5,8)=3727q ( - 5 , - 8 ) = - \frac { 37 } { 27 }
D) q(5,8)=3727q ( - 5 , - 8 ) = \frac { 37 } { 27 }
E) q(5,8)=5437q ( - 5 , - 8 ) = - \frac { 54 } { 37 }
Question
Describe the trace of the surface given by the function below in the xy-plane. x2yz2=0x ^ { 2 } - y - z ^ { 2 } = 0

A)hyperbola
B)parabola
C)ellipse
D)line
E)circle
Question
Find the lengths of the sides of the triangle with the given vertices, and determine whether the triangle is a right triangle, an isosceles triangle, or neither. (0,0,0),(2,2,1),(2,4,4)( 0,0,0 ) , ( 2,2,1 ) , ( 2 , - 4,4 )

A) 3,5,53 , \sqrt { 5 } , 5 ; obtuse triangle
B) 3,35,63,3 \sqrt { 5 } , 6 ; right triangle
C) 6,3,5\sqrt { 6 } , 3,5 ; right triangle
D) 2,4,32,4,3 ; acute triangle
E) 2,4,32,4 , \sqrt { 3 } ; acute triangle
Question
Find the intercepts of the plane given by 3x9z=183 x - 9 z = 18 .

A)The xx -intercept is (0,0,6)( 0,0,6 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
B)The xx -intercept is (0,6,0)( 0,6,0 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
C)The xx -intercept is (0,6,0)( 0 , - 6,0 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
D)The xx -intercept is (6,0,0)( - 6,0,0 ) .The zz -intercept is (0,0,2)( 0,0 , - 2 ) .
E)The xx -intercept is (6,0,0)( 6,0,0 ) .The zz -intercept is (0,0,2)( 0,0 , - 2 ) .
Question
Identify the quadric surface. x24+y2z2=1\frac { x ^ { 2 } } { 4 } + y ^ { 2 } - z ^ { 2 } = 1

A)The graph is an elliptic paraboloid.
B)The graph is an elliptic cone.
C)The graph is a hyperboloid of two sheet.
D)The graph is hyperboloid of one sheet.
E)The graph is an ellipsoid.
Question
Find the the distance between the two points (0,1,2)( 0 , - 1,2 ) and (3,2,5)( - 3 , - 2,5 ) .

A)1 units
B)19 units
C) 19\sqrt { 19 } units
D)3 units
E)7 units
Question
Find the center and radius of the sphere. x2+y2+z25x=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 5 x = 0

A)Center: (52,0,0)\left( \frac { 5 } { 2 } , 0,0 \right) Radius: 52\frac { 5 } { 2 }
B)Center: (0,32,0)\left( 0 , \frac { 3 } { 2 } , 0 \right) Radius: 32\frac { 3 } { 2 }
C)Center: (0,32,12)\left( 0 , \frac { 3 } { 2 } , \frac { 1 } { 2 } \right) Radius: 102\frac { \sqrt { 10 } } { 2 }
D)Center: (12,0,0)\left( \frac { 1 } { 2 } , 0,0 \right) Radius: 12\frac { 1 } { 2 }
E)Center: (52,0,1)\left( \frac { 5 } { 2 } , 0,1 \right) Radius: 292\frac { \sqrt { 29 } } { 2 }
Question
The two planes x8y9z=4x - 8 y - 9 z = 4 and 4x21y7z=44 x - 21 y - 7 z = - 4 are parallel.

A)true
B)false
Question
Find the equation of the sphere that has the points (8,2,2)( 8,2,2 ) and (6,4,4)( 6,4,4 ) as end points of a diameter.

A) (x+7)+(y+3)+(z+3)=6( x + 7 ) + ( y + 3 ) + ( z + 3 ) = 6
B) (x+7)2+(y+3)2+(z+3)2=3( x + 7 ) ^ { 2 } + ( y + 3 ) ^ { 2 } + ( z + 3 ) ^ { 2 } = 3
C) (x7)2+(y3)2+(z3)2=6( x - 7 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 6
D) (x7)2+(y3)2+(z3)2=3( x - 7 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 3
E) (x7)+(y3)+(z3)=3( x - 7 ) + ( y - 3 ) + ( z - 3 ) = 3
Question
The two planes 4x3y+z=64 x - 3 y + z = 6 and 8x+7y+9z=18 x + 7 y + 9 z = 1 are perpendicular.

A)false
B)true
Question
Because of the forces caused by its rotation, a planet is actually an oblate ellipsoid rather than a sphere. The equatorial radius is 3961 miles and the polar radius is 3957 miles. Find an equation of the ellipsoid. Assume that the center of a planet is at the origin and the xy- trace (z=0)( z = 0 ) corresponds to the equator.

A) x239612+y239612z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3961 ^ { 2 } } - \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
B) x239612+y239572+z239612=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3957 ^ { 2 } } + \frac { z ^ { 2 } } { 3961 ^ { 2 } } = 1
C) x239612+y239612+z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3961 ^ { 2 } } + \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
D) x239612y239612z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } - \frac { y ^ { 2 } } { 3961 ^ { 2 } } - \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
E) x239612+y239572+z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3957 ^ { 2 } } + \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
Question
Evaluate the function w=x2yzxyzw = \frac { x ^ { 2 } - y z } { x y z } at (8,6,3)( - 8,6,3 )

A) w=1372w = \frac { 13 } { 72 }
B) w=2972w = - \frac { 29 } { 72 }
C) w=79w = - \frac { 7 } { 9 }
D) w=4172w = - \frac { 41 } { 72 }
E) w=2372w = - \frac { 23 } { 72 }
Question
Evaluate fxf _ { x } and fyf _ { y } for the function f(x,y)=7x3+xyy3f ( x , y ) = 7 x ^ { 3 } + x y - y ^ { 3 } at the point (4,6)( 4 , - 6 ) .

A) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -132
B) fx(4,6)=f _ { x } ( 4 , - 6 ) = 360 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -104
C) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -104
D) fx(4,6)=f _ { x } ( 4 , - 6 ) = 546 and fy(4,6)=f _ { y } ( 4 , - 6 ) = 344
E) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = 112
Question
Use the function f(x,y)=ln(10xy)8x2+6y2f ( x , y ) = \frac { \ln ( 10 x y ) } { 8 x ^ { 2 } + 6 y ^ { 2 } } to find f(2,7)f ( 2,7 )

A) f(2,7)=ln14058f ( 2,7 ) = \frac { \ln 140 } { 58 }
B) f(2,7)=ln140416f ( 2,7 ) = \frac { \ln 140 } { 416 }
C) f(2,7)=ln20326f ( 2,7 ) = \frac { \ln 20 } { 326 }
D) f(2,7)=ln70424f ( 2,7 ) = \frac { \ln 70 } { 424 }
E) f(2,7)=ln140326f ( 2,7 ) = \frac { \ln 140 } { 326 }
Question
Find the first partial derivatives with respect to x, y, and z. w=9xz8x+4yw = \frac { 9 x z } { 8 x + 4 y }

A) wx=36xz(8x+4y)2,wy=36yz(8x+4y)2,wz=9x8x+4y\frac { \partial w } { \partial x } = \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { 8 x + 4 y }
B) wx=36xz8x+4y,wy=36yz8x+4y,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 x z } { 8 x + 4 y } , \frac { \partial w } { \partial y } = - \frac { 36 y z } { 8 x + 4 y } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
C) wx=36yz8x+4y,wy=36xz8x+4y,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 y z } { 8 x + 4 y } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { 8 x + 4 y } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
D) wx=36yz(8x+4y)2,wy=36xz(8x+4y)2,wz=9x8x+4y\frac { \partial w } { \partial x } = \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { 8 x + 4 y }
E) wx=36yz(8x+4y)2,wy=36xz(8x+4y)2,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
Question
Find the domain and range of the function. f(x,y)=exyf ( x , y ) = e ^ { \frac { x } { y } }

A)Domain: all point (x,y)( x , y ) such that y0y \neq 0 Range: (,0)( - \infty , 0 )
B)Domain: all point (x,y)( x , y ) such that y0y \neq 0  <strong>Find the domain and range of the function.  f ( x , y ) = e ^ { \frac { x } { y } } </strong> A)Domain: all point  ( x , y )  such that  y \neq 0  Range:  ( - \infty , 0 )  B)Domain: all point  ( x , y )  such that  y \neq 0    Range:  ( 0 , \infty )  C)Domain: all point  ( x , y )  such that  y \neq 0,1  Range:  ( 0 , \infty )  D)Domain: all point  ( x , y )  such that  y \neq 0,1  Range:  ( - \infty , \infty )  E)Domain: all point  ( x , y )  such that  y \neq 0  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>  Range: (0,)( 0 , \infty )
C)Domain: all point (x,y)( x , y ) such that y0,1y \neq 0,1 Range: (0,)( 0 , \infty )
D)Domain: all point (x,y)( x , y ) such that y0,1y \neq 0,1 Range: (,)( - \infty , \infty )
E)Domain: all point (x,y)( x , y ) such that y0y \neq 0 Range: (,)( - \infty , \infty )
Question
Find the slopes of the surface h(x,y)=3y2x2h ( x , y ) = 3 y ^ { 2 } - x ^ { 2 } in the x- and y- directions at the point (1,3,26)( - 1,3,26 ) .

A)slope in x-direction: 29slope in y-direction: 17
B)slope in x-direction: 2slope in y-direction: 18
C)slope in x-direction: 17slope in y-direction: 29
D)slope in x-direction: 20slope in y-direction: 20
E)slope in x-direction: 18slope in y-direction: 2
Question
The utility function U=f(x,y)U = f ( x , y ) is a measure of utility (or satisfaction) derived by a person from the consumption of two products x and y. Suppose the utility function is U=7x2+5xy2y2U = - 7 x ^ { 2 } + 5 x y - 2 y ^ { 2 } . Determine the marginal utility of product x.

A) 5x4y5 x - 4 y
B) 14x+5y- 14 x + 5 y
C) 14x+5y2y2- 14 x + 5 y - 2 y ^ { 2 }
D) 7x2+5x4y- 7 x ^ { 2 } + 5 x - 4 y
E) 14x+54y- 14 x + 5 - 4 y
Question
For f(x,y)f ( x , y ) , find all values of x and y such that fx(x,y)=0f _ { x } ( x , y ) = 0 and fy(x,y)=0f _ { y } ( x , y ) = 0 simultaneously. f(x,y)=16x34xy+16y3f ( x , y ) = 16 x ^ { 3 } - 4 x y + 16 y ^ { 3 }

A) (112,112)\left( - \frac { 1 } { 12 } , - \frac { 1 } { 12 } \right)
B) (112,112)\left( \frac { 1 } { 12 } , \frac { 1 } { 12 } \right)
C)(0,0)
D)Both B and C
E)Both A and B
Question
Describe the level curves for the function f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } for the c-values given by c=0,2,4,6,8c = 0,2,4,6,8 .  <strong>Describe the level curves for the function  f ( x , y ) = x ^ { 2 } + y ^ { 2 }  for the c-values given by  c = 0,2,4,6,8  .  </strong> A)  c = 0   8 = x ^ { 2 } + y ^ { 2 }   c = 2   6 = x ^ { 2 } + y ^ { 2 }   c = 4   4 = x ^ { 2 } + y ^ { 2 }   c = 6   2 = x ^ { 2 } + y ^ { 2 }   c = 8   0 = x ^ { 2 } + y ^ { 2 }  B)  c = 0   0 = x ^ { 2 } + y ^ { 2 }   c = 2   2 = x ^ { 2 } + y ^ { 2 }   c = 4   4 = x ^ { 2 } + y ^ { 2 }   c = 6   6 = x ^ { 2 } + y ^ { 2 }   c = 8   8 = x ^ { 2 } + y ^ { 2 }  C)  c = 0   2 = x ^ { 2 } + y ^ { 2 }   c = 2   4 = x ^ { 2 } + y ^ { 2 }   c = 4   6 = x ^ { 2 } + y ^ { 2 }   c = 6   8 = x ^ { 2 } + y ^ { 2 }   c = 8   0 = x ^ { 2 } + y ^ { 2 }  D)  c = 0   4 = x ^ { 2 } + y ^ { 2 }   c = 2   6 = x ^ { 2 } + y ^ { 2 }   c = 4   8 = x ^ { 2 } + y ^ { 2 }   c = 6   0 = x ^ { 2 } + y ^ { 2 }   c = 8   2 = x ^ { 2 } + y ^ { 2 }  E)  c = 0   0 = x ^ { 2 } + y ^ { 2 }   c = 2   4 = x ^ { 2 } + y ^ { 2 }   c = 4   16 = x ^ { 2 } + y ^ { 2 }   c = 6   36 = x ^ { 2 } + y ^ { 2 }   c = 8   64 = x ^ { 2 } + y ^ { 2 }  <div style=padding-top: 35px>

A) c=0c = 0 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=2c = 2 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=4c = 4 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=6c = 6 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=8c = 8 0=x2+y20 = x ^ { 2 } + y ^ { 2 }
B) c=0c = 0 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=2c = 2 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=4c = 4 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=6c = 6 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=8c = 8 8=x2+y28 = x ^ { 2 } + y ^ { 2 }
C) c=0c = 0 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=2c = 2 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=4c = 4 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=6c = 6 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=8c = 8 0=x2+y20 = x ^ { 2 } + y ^ { 2 }
D) c=0c = 0 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=2c = 2 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=4c = 4 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=6c = 6 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=8c = 8 2=x2+y22 = x ^ { 2 } + y ^ { 2 }
E) c=0c = 0 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=2c = 2 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=4c = 4 16=x2+y216 = x ^ { 2 } + y ^ { 2 } c=6c = 6 36=x2+y236 = x ^ { 2 } + y ^ { 2 } c=8c = 8 64=x2+y264 = x ^ { 2 } + y ^ { 2 }
Question
Test for relative extrema and saddle points. z=x28xy+y2+120xz = x ^ { 2 } - 8 x y + y ^ { 2 } + 120 x

A)saddle point at (4,16,720)( - 4 , - 16 , - 720 )
B)saddle point at (4,16,240)( 4,16,240 )
C)saddle point at (0,0,0)( 0,0,0 )
D)relative minimum at (4,16,1264)( 4 , - 16,1264 )
E)relative minimum at (16,128,2176)( 16,128,2176 )
Question
A company manufactures two types of wood-burning stoves: a freestanding model and a fireplace-insert model. The cost function for producing x freestanding and y fireplace-insert stoves is C=30xy+160x+195y+1050C = 30 \sqrt { x y } + 160 x + 195 y + 1050 . Find the marginal costs ( C/x\partial C / \partial x and c/y\partial c / \partial y ) when x=60x = 60 and y=10y = 10 . Round your answers to two decimal places.

A) C/x=160.61,C/y=195.61\partial C / \partial x = 160.61 , \partial C / \partial y = 195.61
B) C/x=172.25,C/y=268.48\partial C / \partial x = 172.25 , \partial C / \partial y = 268.48
C) C/x=161.94,C/y=199.74\partial C / \partial x = 161.94 , \partial C / \partial y = 199.74
D) C/x=166.12,C/y=231.74\partial C / \partial x = 166.12 , \partial C / \partial y = 231.74
E) C/x=254.87,C/y=427.38\partial C / \partial x = 254.87 , \partial C / \partial y = 427.38
Question
Describe the level curves of the function. Sketch the level curves for the given c-values. z=124x5yz = 12 - 4 x - 5 y , c = 0, 2, 4, 6

A)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The value A(t,r)A ( t , r ) of an investment of $4,000 after t years in an account for which the interest rate 100r% is compounded continuously is given by the function A(t,r)=4,000ertA ( t , r ) = 4,000 e ^ { r t } dollars. Write the partial derivative At\frac { \partial A } { \partial t }

A) At=4,000rent\frac { \partial A } { \partial t } = 4,000 r e ^ { n t }
B) At=4,000ert\frac { \partial A } { \partial t } = 4,000 e ^ { rt }
C) At=4,000tert\frac { \partial A } { \partial t } = 4,000 t e ^ {rt }
D) At=4,000rer(t1)\frac { \partial A } { \partial t } = 4,000 r e ^ { r ( t - 1 ) }
E) At=4,000ret\frac { \partial A } { \partial t } = 4,000 r e ^ { t }
Question
If f(x,y)=x55y10,f ( x , y ) = \sqrt { x ^ { 5 } - 5 y ^ { 10 } }, find fxf _ { x } and fy.f _ { y }.

A) fx=5x45y10,fy=x550y9f _ { x } = \sqrt { 5 x ^ { 4 } - 5 y ^ { 10 } } , \quad f _ { y } = \sqrt { x ^ { 5 } - 50 y ^ { 9 } }
B) fx=125x45y10,fy=12x550y9f _ { x } = \frac { 1 } { 2 \sqrt { 5 x ^ { 4 } - 5 y ^ { 10 } } } , \quad f _ { y } = \frac { 1 } { 2 \sqrt { x ^ { 5 } - 50 y ^ { 9 } } }
C) fx=5x4x55y10,fy=50y9x55y10f _ { x } = \frac { 5 x ^ { 4 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } } , \quad f _ { y } = - \frac { - 50 y ^ { 9 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } }
D) fx=5x42x55y10,fy=25y9x55y10f _ { x } = \frac { 5 x ^ { 4 } } { 2 \sqrt { x ^ { 5 } - 5 y ^ { 10 } } } , \quad f _ { y } = - \frac { 25 y ^ { 9 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } }
E) fx=5x4x55y10,fy=50y9x55y10f _ { x } = 5 x ^ { 4 } \sqrt { x ^ { 5 } - 5 y ^ { 10 } } , \quad f _ { y } = - 50 y ^ { 9 } \sqrt { x ^ { 5 } - 5 y ^ { 10 } }
Question
If f(x,y)=ln(xy4+7),f ( x , y ) = \ln \left( x y ^ { 4 } + 7 \right), find fx and fy\frac { \partial f } { \partial x } \text { and } \frac { \partial f } { \partial y }

A) fx=xxy4+7,fy=y4xy4+7\frac { \partial f } { \partial x } = \frac { x } { x y ^ { 4 } + 7 } , \frac { \partial f } { \partial y } = \frac { y ^ { 4 } } { x y ^ { 4 } + 7 }
B) fx=y4xy4+7,fy=4xy3xy4+7\frac { \partial f } { \partial x } = \frac { y ^ { 4 } } { x y ^ { 4 } + 7 } , \frac { \partial f } { \partial y } = \frac { 4 x y ^ { 3 } } { x y ^ { 4 } + 7 }
C) fx=1y4,fy=14xy3\frac { \partial f } { \partial x } = \frac { 1 } { y ^ { 4 } } , \quad \frac { \partial f } { \partial y } = \frac { 1 } { 4 x y ^ { 3 } }
D) fx=xy4+7y4,fy=4xy4+7xy3\frac { \partial f } { \partial x } = \frac { x y ^ { 4 } + 7 } { y ^ { 4 } } , \quad \frac { \partial f } { \partial y } = \frac { 4 x y ^ { 4 } + 7 } { x y ^ { 3 } }
E) fx=ln(1y4),fy=ln(14xy3)\frac { \partial f } { \partial x } = \ln \left( \frac { 1 } { y ^ { 4 } } \right) , \quad \frac { \partial f } { \partial y } = \ln \left( \frac { 1 } { 4 x y ^ { 3 } } \right)
Question
Sketch the level curves for the function below for the given cc - values c=0,1,2,3,4,5c = 0,1,2,3,4,5 . z=25x2y2z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } }

A)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Describe the domain and range of the function. f(x,y)=49x2y2f ( x , y ) = \sqrt { 49 - x ^ { 2 } - y ^ { 2 } }

A)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval (0,7)
B)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval [0,7]
C)domain: The disk x2+y249x ^ { 2 } + y ^ { 2 } \leq 49 range: The interval [0,7)
D)domain: The disk x2+y249x ^ { 2 } + y ^ { 2 } \leq 49 range: The interval [0,7]
E)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval [0,7)
Question
Evaluate fxf _ { x } and fyf _ { y } for the function f(x,y)=7xyx2+y2f ( x , y ) = \frac { 7 x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } at the point (4,8)( 4,8 ) . Round your answer to two decimal places.

A) fx(4,8)=f _ { x } ( 4,8 ) = 5.01 and fy(4,8)=f _ { y } ( 4,8 ) = 0.63
B) fx(4,8)=f _ { x } ( 4,8 ) = 4.51 and fy(4,8)=f _ { y } ( 4,8 ) = 0.63
C) fx(4,8)=f _ { x } ( 4,8 ) = 3.13 and fy(4,8)=f _ { y } ( 4,8 ) = 6.26
D) fx(4,8)=f _ { x } ( 4,8 ) = 5.01 and fy(4,8)=f _ { y } ( 4,8 ) = 0.13
E) fx(4,8)=f _ { x } ( 4,8 ) = 3.13 and fy(4,8)=f _ { y } ( 4,8 ) = 6.26.
Question
A manufacturer estimates the Cobb-Douglas production function to be given by f(x,y)=100x0.75y0.25f ( x , y ) = 100 x ^ { 0.75 } y ^ { 0.25 } . Estimate the production levels when x=1500x = 1500 and y=1000y = 1000 .

A)135,540 units
B)122,560 units
C)131,601 units
D)145,330 units
E)112,745 units
Question
Find the four second partial derivatives. Observe that the second mixed partials are equal. z=x2+8xy+6y2z = x ^ { 2 } + 8 x y + 6 y ^ { 2 }

A) 2zx2=2,2zy2=6,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0
B) 2zx2=0,2zy2=6,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
C) 2zx2=2,2zy2=12,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 12 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
D) 2zx2=0,2zy2=0,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
E) 2zx2=0,2zy2=0,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0
Question
A company manufactures two types of sneakers: running shoes and basketball shoes. The total revenue from x1 units of running shoes and y1 units of basketball shoes is: R=3x1210x222x1x2+50x1+96x2R = - 3 x _ { 1 } ^ { 2 } - 10 x _ { 2 } ^ { 2 } - 2 x _ { 1 } x _ { 2 } + 50 x _ { 1 } + 96 x _ { 2 } , where x1 and x2 are in thousands of units. Find x1 and x2 so as to maximize the revenue.

A) x1=20229,x2=11929x _ { 1 } = \frac { 202 } { 29 } , x _ { 2 } = \frac { 119 } { 29 }
B) x1=11929,x2=20229x _ { 1 } = \frac { 119 } { 29 } , x _ { 2 } = \frac { 202 } { 29 }
C) x1=40459,x2=23859x _ { 1 } = \frac { 404 } { 59 } , x _ { 2 } = \frac { 238 } { 59 }
D) x1=23859,x2=40459x _ { 1 } = \frac { 238 } { 59 } , x _ { 2 } = \frac { 404 } { 59 }
E) x1=11929,x2=10129x _ { 1 } = \frac { 119 } { 29 } , x _ { 2 } = \frac { 101 } { 29 }
Question
Examine the function f(x,y)=x312xy+y3+4f ( x , y ) = x ^ { 3 } - 12 x y + y ^ { 3 } + 4 for relative extrema and saddle points.

A)saddle point: (0,0,4)( 0,0,4 ) ; relative minimum: (4,4,60)( 4,4 , - 60 )
B)relative minimum: (0,0,4)( 0,0,4 ) ; relative maximum: (4,4,60)( 4,4 , - 60 )
C)saddle points: (0,0,4)( 0,0,4 ) , (4,4,60)( 4,4 , - 60 )
D)saddle point: (4,4,60)( 4,4 , - 60 ) ; relative minimum: (0,0,4)( 0,0,4 )
E)relative minimum: (4,4,60)( 4,4 , - 60 ) ; relative maximum: (0,0,4)( 0,0,4 )
Question
Use Lagrange multipliers to find the minimum distance from the circle x2+(y4)2=49x ^ { 2 } + ( y - 4 ) ^ { 2 } = 49 to the point (10,5)( - 10 , - 5 ) Round your answer to the nearest tenth.

A)20.4
B)132.0
C)418.1
D)6.5
E)41.6
Question
Examine the function given below for relative extrema and saddle points. f(x,y)=f ( x , y ) = xy2\frac { x y } { 2 }

A)The function has a saddle point at (0,0,0)( 0,0,0 ) .
B)The function has a relative maximum at (0,0,0)( 0,0,0 ) .
C)The function has a relative minimum at (0,0,0)( 0,0,0 ) .
D)The function has a saddle point at (0,0,2)( 0,0,2 ) .
E)The function has a relative maximum at (0,0,2)( 0,0,2 ) .
Question
Use Lagrange multipliers to find the given extremum. In each case, assume that xx and yy are positive. Maximize f(x,y)=xyf ( x , y ) = x y Constraint x+y=10x + y = 10

A) f(7,3)=21f ( 7,3 ) = 21
B) f(5,5)=25f ( 5,5 ) = 25
C) f(6,4)=24f ( 6,4 ) = 24
D) f(2,8)=16f ( 2,8 ) = 16
E) f(1,9)=9f ( 1,9 ) = 9
Question
Use Lagrange multipliers to find the given extremum. Assume that xx and yy are positive. Minimize f(x,y)=exyf ( x , y ) = e ^ { xy } Constraint x2+y28=0x ^ { 2 } + y ^ { 2 } - 8 = 0

A) f(2,2)=e4f ( 2,2 ) = e ^ { 4 }
B) f(1,1)=e1f ( 1,1 ) = e ^ { 1 }
C) f(3,1)=e3f ( 3,1 ) = e ^ { 3 }
D) f(4,2)=e8f ( 4,2 ) = e ^ { 8 }
E) f(2,1)=e2f ( 2,1 ) = e ^ { 2 }
Question
Find three positive numbers x, y, and z whose sum is 24 and the sum of the squares is a maximum.

A)x = y = z = 8
B)x = 4, y = 4, z = 16
C)x = 6, y = 6, z = 12
D)x = 3.2, y = 4.8, z = 8
E)x = 1.6, y = 9.6, z = 12.8
Question
A rectangular box is resting on the xyx y -plane with one vertex at the origin. The opposite lies in the plane Find the dimensions that maximize the volume. (Hint: Maximize V=xyzV = x y z subject to the constraint 2x+3y+5z90=02 x + 3 y + 5 z - 90 = 0 ).

A)15 units ×\times 12 units ×\times 5 units
B)11 units ×\times 9 units ×\times 5 units
C)10 units ×\times 9 units ×\times 6 units
D)15 units ×\times 10 units ×\times 6 units
E)12 units ×\times 11 units ×\times 7 units
Question
Examine the function given below for relative extrema and saddle points. f(x,y)=f ( x , y ) = (x1)2+(y3)2( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 }

A)The function has a relative minimum at (1,3,0)( 1,3,0 ) .
B)The function has a relative maximum at (1,3,0)( 1,3,0 )
C)The function has a saddle point at (1,3,0)( 1,3,0 ) .
D)The function has a saddle point at (0,1,3)( 0,1,3 ) .
E)The function has a saddle point at (0,1,3)( 0,1,3 )
Question
Find three positive numbers x, y, and z whose sum is 33 and product is a maximum.

A)x = 5.5, y = 5.5, z = 22
B)x = y = z = 11
C)x = 8.25, y = 8.25, z = 16.5
D)x = 4.4, y = 6.6, z = 11
E)x = 2.2, y = 13.2, z = 17.6
Question
Examine the function f(x,y)=5x28y23x+8y+4f ( x , y ) = 5 x ^ { 2 } - 8 y ^ { 2 } - 3 x + 8 y + 4 for relative extrema.

A)saddle point at (310,12)\left( \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
B)relative minimum at (310,12)\left( \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
C)saddle point at (310,12)\left( - \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
D)relative maximum at (310,12)\left( \frac { 3 } { 10 } , - \frac { 1 } { 2 } \right)
E)saddle point at (310,12)\left( - \frac { 3 } { 10 } , - \frac { 1 } { 2 } \right)
Question
The sum of the length (denote by z) and the girth (perimeter of a cross section) of packages carried by a delivery service cannot exceed 60 inches. Find the dimensions of the rectangular package of largest volume that may be sent.

A)x = 7.5, y = 7.5, z = 20
B)x = 5, y = 5, z = 40
C)x = 10 , y = 10 , z = 20
D)x = 4, y = 6, z = 40
E)x = 2, y = 12, z = 32
Question
Find the critical points of the function f(x,y,z)=(x4)2+(7y)2+(z2)2f ( x , y , z ) = ( x - 4 ) ^ { 2 } + ( 7 - y ) ^ { 2 } + ( z - 2 ) ^ { 2 } , and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point.

A)relative minimum at (4,7,2)( - 4 , - 7 , - 2 )
B)relative maximum at (4,7,2)( - 4 , - 7 , - 2 )
C)relative minimum at (4,7,2)( 4,7,2 )
D)relative maximum at (4,7,2)( 4,7,2 )
E)no relative extrema
Question
A microbiologist must prepare a culture medium in which to grow a certain type of bacteria. The percent of salt contained in this medium is given by S=12xyzS = 12 x y z where x,y,x , y, and zz are the nutrient solutions to be mixed in the medium. For the bacteria to grow, the medium must be 13% salt. Nutrient solutions x,y,x , y, and zz cost $1, $2, and $3 per liter, respectively. How much of each nutrient solution should be used to minimize the cost of the culture medium?

A) x=0.06530.402Ly=0.06530.201Lz=0.06530.134L\begin{array} { l } x = \sqrt [ 3 ] { 0.065 } \approx 0.402 L \\y = \sqrt [ 3 ] { 0.065 } \approx 0.201 L \\z = \sqrt [ 3 ] { 0.065 } \approx 0.134 L\end{array}
B) x=0.03530.327Ly=0.16530.548Lz=0.01530.2466L\begin{array} { l } x = \sqrt [ 3 ] { 0.035 } \approx 0.327 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.015 } \approx 0.2466 L\end{array}
C) x=0.06530.402Ly=0.16530.548Lz=0.05530.380L\begin{array} { l } x = \sqrt [ 3 ] { 0.065 } \approx 0.402 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.055 } \approx 0.380 L\end{array}
D) x=0.02530.292Ly=0.03530.327Lz=0.11530.486L\begin{array} { l } x = \sqrt [ 3 ] { 0.025 } \approx 0.292 L \\y = \sqrt [ 3 ] { 0.035 } \approx 0.327 L \\z = \sqrt [ 3 ] { 0.115 } \approx 0.486 L\end{array}
E) x=0.16530.548Ly=0.16530.548Lz=0.26530.642L\begin{array} { l } x = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.265 } \approx 0.642 L\end{array}
Question
Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x,y)f ( x , y ) at the critical point (x0,y0)\left( x _ { 0 } , y _ { 0 } \right) . Given: fxx(x0,y0)=1fyy(x0,y0)=8fxy(x0,y0)=5\begin{array} { l } f _ { x x } \left( x _ { 0 } , y _ { 0 } \right) = - 1 \\f _ { y y } \left( x _ { 0 } , y _ { 0 } \right) = - 8 \\f _ { x y } \left( x _ { 0 } , y _ { 0 } \right) = 5\end{array}

A)  relative minimum \text { relative minimum } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
B)  saddle point \text { saddle point } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
C)  relative maximum \text { relative maximum } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
D)  insufficient information to determine the nature of the function \text { insufficient information to determine the nature of the function } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
Question
Find the critical points of the function f(x,y,z)=3((x+8)(y7)(z3))2f ( x , y , z ) = - 3 - ( ( x + 8 ) ( y - 7 ) ( z - 3 ) ) ^ { 2 } , and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point.

A)relative minima at (8,a,b)( - 8 , a , b ) , (c,7,d)( c , 7 , d ) , (m,n,3)( m , n , 3 ) , where a,b,c,d,m,a , b , c , d , m, and nn are arbitrary real numbers
B)relative maxima at (8,a,b)( - 8 , a , b ) , (c,7,d)( c , 7 , d ) , (m,n,3)( m , n , 3 ) , where a,b,c,d,m,a , b , c , d , m, and nn are arbitrary real numbers
C)relative minimum at (8,7,3)( - 8,7,3 )
D)relative maximum at (8,7,3)( - 8,7,3 )
E)no relative extrema
Question
Examine the function f(x,y)=4x22xy+4y2+120x+60yf ( x , y ) = 4 x ^ { 2 } - 2 x y + 4 y ^ { 2 } + 120 x + 60 y for relative extrema.

A)relative  minimum \text { minimum } at (18,12)( - 18 , - 12 )
B)relative  maximum \text { maximum } at (18,12)( - 18 , - 12 )
C)relative  minimum \text { minimum } at (18,12)( - 18,12 )
D)relative  maximum \text { maximum } at (18,12)( - 18,12 )
E)no relative extrema
Question
Use Lagrange multipliers to minimize the function f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } subject to the following constraint. x+y+z21=0x + y + z - 21 = 0 Assume that x, y, and z are positive.

A)49
B)147
C)98
D)294
E)441
Question
Use Lagrange multipliers to maximize the function f(x,y)=16x2y2f ( x , y ) = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } subject to the following constraint: x+y4=0x + y - 4 = 0 Assume that x, y, and z are positive.

A) 2424
B) 24\sqrt { 24 }
C) 8\sqrt { 8 }
D) 88
E)no absolute maximum
Question
Use Lagrange multipliers to find the given extremum. In each case, assume that x,y,x , y, and zz are positive. Maximize f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z Constraints x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

A) f(23,23,23)=2f \left( \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } \right) = \sqrt { 2 }
B) f(53,53,53)=5f \left( \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } \right) = \sqrt { 5 }
C) f(33,33,33)=3f \left( \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right) = \sqrt { 3 }
D) f(3,3,3)=33f ( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } ) = 3 \sqrt { 3 }
E) f(13,13,13)=3f \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) = \sqrt { 3 }
Question
Evaluate the double integral 00xye(4x2+9y2)dxdy\int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } x y e ^ { - \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) } d x d y .

A) 1180\frac { 1 } { 180 }
B) 119\frac { 1 } { 19 }
C) 1144\frac { 1 } { 144 }
D) 172- \frac { 1 } { 72 }
E) 1108- \frac { 1 } { 108 }
Question
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Data that are modeled by y=3.29x4.17y = 3.29 x - 4.17 have a negative correlation.

A)True
B)False; The data modeled by y=3.29x4.17y = 3.29 x - 4.17 have a positive correlation.
Question
Evaluate the double integral 010y(3x+2y)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } ( 3 x + 2 y ) d x d y . Round your answer to two decimal places, where applicable.

A)-8.83
B)11.17
C)2.00
D)1.17
E)5.00
Question
A store manager wants to know the demand y for an energy bar as a function of price x. The daily sales for three different prices of the energy bar are shown in the table. Price, x
$ 1.02
$ 1.23
$ 1.54
Demand, y
410
365
280
(i) Use the regression capabilities of a graphing utility to find the least squares regression line for the data.
(ii) Use the model to estimate the demand when the price is $1.38.

A)(i) y=24.314583x+382.38409y = - 24.314583 x + 382.38409 ; (ii)348.708392
B)(i) y=24.314583x+382.38409y = - 24.314583 x + 382.38409 ; (ii)-416.059787
C)(i) y=382.38409x24.314583y = 382.38409 x - 24.314583 ; (ii)505.287381
D)(i) y=24.314583x382.38409y = - 24.314583 x - 382.38409 ; (ii)-416.059787
E)none of the above
Question
Evaluate the double integral 0403(3x+4y)dydx\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 3 x + 4 y ) d y d x .

A)134.00
B)144.00
C)154.00
D)42.00
E)24.00
Question
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the points (10,2),(1,8),(6,9),(4,10),(16,4),(17,4)( 10,2 ) , ( 1,8 ) , ( 6,9 ) , ( 4,10 ) , ( 16,4 ) , ( 17,4 ) . Round your answer to three decimal places.

A) y=0.383x+9.524y = - 0.383 x + 9.524
B) y=0.373x+9.514y = - 0.373 x + 9.514
C) y=0.373x+9.524y = - 0.373 x + 9.524
D) y=0.363x+9.524y = - 0.363 x + 9.524
E) y=0.363x+9.514y = - 0.363 x + 9.514
Question
Sketch the region RR whose area is given by the following double integral. 04x2dydx\int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x

A)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
A manufacturer has an order for 1100 units of fine paper that can be produced at two locations. Let x1x _ { 1 } and x2x _ { 2 } be the numbers of units produced at the two plants. Find the number of units that should be produced at each plant to minimize the cost if the cost function is given by C=0.2x12+25x1+0.05x22+12x2C = 0.2 x _ { 1 } ^ { 2 } + 25 x _ { 1 } + 0.05 x _ { 2 } ^ { 2 } + 12 x _ { 2 } .

A) x1=388x _ { 1 } = 388 units and x2=906x _ { 2 } = 906 units
B) x1=906x _ { 1 } = 906 units and x2=194x _ { 2 } = 194 units
C) x1=194x _ { 1 } = 194 units and x2=906x _ { 2 } = 906 units
D) x1=194x _ { 1 } = 194 units and x2=1812x _ { 2 } = 1812 units
E) x1=1812x _ { 1 } = 1812 units and x2=388x _ { 2 } = 388 units
Question
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the given points. (4,1),(2,0),(2,4),(4,5)( - 4 , - 1 ) , ( - 2,0 ) , ( 2,4 ) , ( 4,5 )

A) y=1.8x+5y = 1.8 x + 5
B) y=1.2x+2y = 1.2 x + 2
C) y=0.5x+1y = 0.5 x + 1
D) y=0.8x+2y = 0.8 x + 2
E) y=0.2x+1y = 0.2 x + 1
Question
Evaluate the double integral 060x2x2+8dydx\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { x } \frac { 2 } { x ^ { 2 } + 8 } d y d x .

A) ln43\ln 43
B) ln43ln8\ln 43 - \ln 8
C) ln44\ln 44
D) ln44+ln8\ln 44 + \ln 8
E) ln44ln8\ln 44 - \ln 8
Question
Find the least squares regression line for the points (1,0) , (6,6) , (11,12).

A) y=65x65y = \frac { 6 } { 5 } x - \frac { 6 } { 5 }
B) y=65x30133y = \frac { 6 } { 5 } x - \frac { 30 } { 133 }
C) y=30133x65y = \frac { 30 } { 133 } x - \frac { 6 } { 5 }
D) y=30133x30133y = \frac { 30 } { 133 } x - \frac { 30 } { 133 }
E)none of the above
Question
Evaluate the following integral. 3xx34yxdy\int _ { 3 x } ^ { x ^ { 3 } } \frac { 4 y } { x } d y

A) 2(x59x)2 \left( x ^ { 5 } - 9 x \right)
B) 4(x59x)4 \left( x ^ { 5 } - 9 x \right)
C) 2(x53x)2 \left( x ^ { 5 } - 3 x \right)
D) 2(9xx5)2 \left( 9 x - x ^ { 5 } \right)
E)none of the above
Question
An agronomist used four test plots to determine the relationship between the wheat yield yy (in bushels per acre) and the amount of fertilizer xx (in pounds per acre). The results are shown in the table.  Fertilizer, x100150200250 Yield, y35445056\begin{array} { | c | c | c | c | c | } \hline \text { Fertilizer, } x & 100 & 150 & 200 & 250 \\\hline \text { Yield, } y & 35 & 44 & 50 & 56 \\\hline\end{array} (a) Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the data. (b) Estimate the yield for a fertilizer application of 160 pounds per acre.

A) y=0.15x+15.1y = 0.15 x + 15.1
B) y=0.155x+21.1y = 0.155 x + 21.1
C) y=0.138x+22.1y = 0.138 x + 22.1
D) y=0.052x+34y = 0.052 x + 34
E) y=0.234x+17.5y = 0.234 x + 17.5
Question
Evaluate the double integral 02y2y(1+x2+y2)dxdy\int _ { 0 } ^ { 2 } \int _ { y } ^ { 2 y } \left( 1 + x ^ { 2 } + y ^ { 2 } \right) d x d y . Round your answer to two decimal places, where applicable.

A)7.33
B)14.33
C)16.33
D)15.33
E)14.83
Question
Find the sum of the squared errors for the linear model f(x)f ( x ) and the quadratic model g(x)g ( x ) using the given points. f(x)=1.6x+6,g(x)=0.29x2+2.2x+6(3,2),(2,2),(1,4),(0,6),(18)\begin{array} { l } f ( x ) = 1.6 x + 6 , g ( x ) = 0.29 x ^ { 2 } + 2.2 x + 6 \\( - 3,2 ) , ( - 2,2 ) , ( - 1,4 ) , ( 0,6 ) , ( 18 )\end{array}

A) S=1.5S = 1.5 ; S=0.7159S = 0.7159
B) S=1.6S = 1.6 ; S=0.8259S = 0.8259
C) S=1.2S = 1.2 ; S=0.8623S = 0.8623
D) S=1.3S = 1.3 ; S=0.4160S = 0.4160
E) S=1.1S = 1.1 ; S=0.7621S = 0.7621
Question
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. A linear regression model with a positive correlation will have a slope that is greater than 0.

A)True
B)False
Question
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. When the correlation coefficient is r0.98781r \approx - 0.98781 , the model is a good fit.

A)False
B)True
Question
A rancher plans to use an existing stone wall and the side of a barn as a boundary for two adjacent rectangular corrals. Fencing for the perimeter costs 15 per foot. To separate the corrals, a fence that costs 6 per foot will divide the region. The total area of the two corrals is to be 60006000 square feet. Use Lagrange multipliers to find the dimensions that will minimize the cost of the fencing.  <strong>A rancher plans to use an existing stone wall and the side of a barn as a boundary for two adjacent rectangular corrals. Fencing for the perimeter costs 15 per foot. To separate the corrals, a fence that costs 6 per foot will divide the region. The total area of the two corrals is to be  6000  square feet. Use Lagrange multipliers to find the dimensions that will minimize the cost of the fencing.  </strong> A)dimensions:  50  feet by  60  feet B)dimensions:  60  feet by  50  feet C)dimensions:  25  feet by  60  feet D)dimensions:  30  feet by  50  feet E)dimensions:  25  feet by  30  feet <div style=padding-top: 35px>

A)dimensions: 5050 feet by 6060 feet
B)dimensions: 6060 feet by 5050 feet
C)dimensions: 2525 feet by 6060 feet
D)dimensions: 3030 feet by 5050 feet
E)dimensions: 2525 feet by 3030 feet
Question
Use a double integral to find the area of the region bounded by the graphs of y=x13/2y = x ^ { 13 / 2 } and y=xy = x .

A) 22
B) 1111
C) 132\frac { 13 } { 2 }
D) 1315\frac { 13 } { 15 }
E) 1130\frac { 11 } { 30 }
Question
Find the least squares regression line for the given points. Then plot the points and sketch the regression line. (2,1),(0,0),(2,3)( - 2 , - 1 ) , ( 0,0 ) , ( 2,3 )

A) y=x+23y = x + \frac { 2 } { 3 }
B) y=x23y = x - \frac { 2 } { 3 }
C) y=x13y = x - \frac { 1 } { 3 }
D) y=x12y = x - \frac { 1 } { 2 }
E) y=x+13y = x + \frac { 1 } { 3 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/92
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Functions of Several Variables
1
Find the standard equation of the sphere whose center is (6,5,7)( - 6 , - 5,7 ) and whose radius is 4.

A) (x+6)2+(y+5)2+(z7)2=16( x + 6 ) ^ { 2 } + ( y + 5 ) ^ { 2 } + ( z - 7 ) ^ { 2 } = 16
B) (x6)2+(y5)2+(z+7)2=16( x - 6 ) ^ { 2 } + ( y - 5 ) ^ { 2 } + ( z + 7 ) ^ { 2 } = 16
C) (x+6)+(y+5)+(z7)=4( x + 6 ) + ( y + 5 ) + ( z - 7 ) = 4
D) (x+6)2+(y+5)2+(z7)2=4( x + 6 ) ^ { 2 } + ( y + 5 ) ^ { 2 } + ( z - 7 ) ^ { 2 } = 4
E) (x6)+(y5)+(z+7)=4( x - 6 ) + ( y - 5 ) + ( z + 7 ) = 4
(x+6)2+(y+5)2+(z7)2=16( x + 6 ) ^ { 2 } + ( y + 5 ) ^ { 2 } + ( z - 7 ) ^ { 2 } = 16
2
Find (x,y,z)( x , y , z ) if the midpoint of the line segment joining the two points (x,y,z)( x , y , z ) and (4,2,4)( 4 , - 2,4 ) is (1,3,1)( - 1,3 , - 1 ) .

A) (2,4,2)( 2,4,2 )
B) (32,12,32)\left( \frac { 3 } { 2 } , \frac { 1 } { 2 } , \frac { 3 } { 2 } \right)
C) (5,5,5)( 5 , - 5,5 )
D) (52,52,52)\left( - \frac { 5 } { 2 } , \frac { 5 } { 2 } , - \frac { 5 } { 2 } \right)
E) (6,8,6)( - 6,8 , - 6 )
(6,8,6)( - 6,8 , - 6 )
3
Sketch the trace of the intersection of plane y = 4 with the sphere: x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 .

A)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the trace of the intersection of plane y = 4 with the sphere:  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25  .</strong> A)   B)   C)   D)   E)

4
Describe the trace of the surface given by the function below y2+z2x2=1y ^ { 2 } + z ^ { 2 } - x ^ { 2 } = 1 in the xz-plane.

A)circle
B)parabola
C)line
D)ellipse
E)hyperbola
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
5
Find the center and radius of the sphere whose equation is 2x2+2y2+2z28x+12y12z+43=02 x ^ { 2 } + 2 y ^ { 2 } + 2 z ^ { 2 } - 8 x + 12 y - 12 z + 43 = 0 . Round your answer to two decimal places, where applicable.

A)center: (2,3,3)( - 2,3 , - 3 ) ; radius: 0.71
B)center: (2,3,3)( 2 , - 3,3 ) ; radius: 0.71
C)center: (2,3,3)( 2 , - 3,3 ) ; radius: 0.50
D)center: (2,3,3)( - 2 , - 3,3 ) ; radius: 0.71
E)center: (2,3,3)( - 2,3 , - 3 ) ; radius: 0.50
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
6
Identify the quadric surface. x2+y24+z2=1x ^ { 2 } + \frac { y ^ { 2 } } { 4 } + z ^ { 2 } = 1

A)The graph is hyperboloid of two sheets.
B)The graph is an ellipsoid.
C)The graph is an elliptic cone.
D)The graph is an elliptic paraboloid.
E)The graph is a hyperboloid of one sheet.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
7
Sketch the yz-trace of the equation: (x+2)2+(y3)2+(z+2)2=9( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9

A)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the yz-trace of the equation:  ( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 9 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate the function at the given values of the independent variables. z=x3+2xy+3y2,x=9,y=7z = x ^ { 3 } + 2 x y + 3 y ^ { 2 } , \quad x = - 9 , y = 7

A) z=708z = - 708
B) z=102z = 102
C) z=600z = - 600
D) z=568z = - 568
E) z=174z = 174
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
9
Find the coordinates of the point that is located six units behind of the yz-plane, six units to the left of the xz-plane, and seven units below of the xy-plane.

A) (6,6,7)( - 6 , - 6 , - 7 )
B) (6,6,7)( 6 , - 6 , - 7 )
C) (6,6,7)( 6,6 , - 7 )
D) (6,6,7)( - 6,6 , - 7 )
E) (6,6,7)( - 6,6,7 )
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
10
Use the function q(p1,p2)=7p19p29p1+9p2q \left( p _ { 1 } , p _ { 2 } \right) = \frac { 7 p _ { 1 } - 9 p _ { 2 } } { - 9 p _ { 1 } + 9 p _ { 2 } } to find q(5,8)q ( - 5 , - 8 )

A) q(5,8)=2737q ( - 5 , - 8 ) = - \frac { 27 } { 37 }
B) q(5,8)=2737q ( - 5 , - 8 ) = \frac { 27 } { 37 }
C) q(5,8)=3727q ( - 5 , - 8 ) = - \frac { 37 } { 27 }
D) q(5,8)=3727q ( - 5 , - 8 ) = \frac { 37 } { 27 }
E) q(5,8)=5437q ( - 5 , - 8 ) = - \frac { 54 } { 37 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
11
Describe the trace of the surface given by the function below in the xy-plane. x2yz2=0x ^ { 2 } - y - z ^ { 2 } = 0

A)hyperbola
B)parabola
C)ellipse
D)line
E)circle
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
12
Find the lengths of the sides of the triangle with the given vertices, and determine whether the triangle is a right triangle, an isosceles triangle, or neither. (0,0,0),(2,2,1),(2,4,4)( 0,0,0 ) , ( 2,2,1 ) , ( 2 , - 4,4 )

A) 3,5,53 , \sqrt { 5 } , 5 ; obtuse triangle
B) 3,35,63,3 \sqrt { 5 } , 6 ; right triangle
C) 6,3,5\sqrt { 6 } , 3,5 ; right triangle
D) 2,4,32,4,3 ; acute triangle
E) 2,4,32,4 , \sqrt { 3 } ; acute triangle
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
13
Find the intercepts of the plane given by 3x9z=183 x - 9 z = 18 .

A)The xx -intercept is (0,0,6)( 0,0,6 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
B)The xx -intercept is (0,6,0)( 0,6,0 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
C)The xx -intercept is (0,6,0)( 0 , - 6,0 ) .The zz -intercept is (2,0,0)( - 2,0,0 ) .
D)The xx -intercept is (6,0,0)( - 6,0,0 ) .The zz -intercept is (0,0,2)( 0,0 , - 2 ) .
E)The xx -intercept is (6,0,0)( 6,0,0 ) .The zz -intercept is (0,0,2)( 0,0 , - 2 ) .
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
14
Identify the quadric surface. x24+y2z2=1\frac { x ^ { 2 } } { 4 } + y ^ { 2 } - z ^ { 2 } = 1

A)The graph is an elliptic paraboloid.
B)The graph is an elliptic cone.
C)The graph is a hyperboloid of two sheet.
D)The graph is hyperboloid of one sheet.
E)The graph is an ellipsoid.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
15
Find the the distance between the two points (0,1,2)( 0 , - 1,2 ) and (3,2,5)( - 3 , - 2,5 ) .

A)1 units
B)19 units
C) 19\sqrt { 19 } units
D)3 units
E)7 units
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
16
Find the center and radius of the sphere. x2+y2+z25x=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 5 x = 0

A)Center: (52,0,0)\left( \frac { 5 } { 2 } , 0,0 \right) Radius: 52\frac { 5 } { 2 }
B)Center: (0,32,0)\left( 0 , \frac { 3 } { 2 } , 0 \right) Radius: 32\frac { 3 } { 2 }
C)Center: (0,32,12)\left( 0 , \frac { 3 } { 2 } , \frac { 1 } { 2 } \right) Radius: 102\frac { \sqrt { 10 } } { 2 }
D)Center: (12,0,0)\left( \frac { 1 } { 2 } , 0,0 \right) Radius: 12\frac { 1 } { 2 }
E)Center: (52,0,1)\left( \frac { 5 } { 2 } , 0,1 \right) Radius: 292\frac { \sqrt { 29 } } { 2 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
17
The two planes x8y9z=4x - 8 y - 9 z = 4 and 4x21y7z=44 x - 21 y - 7 z = - 4 are parallel.

A)true
B)false
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
18
Find the equation of the sphere that has the points (8,2,2)( 8,2,2 ) and (6,4,4)( 6,4,4 ) as end points of a diameter.

A) (x+7)+(y+3)+(z+3)=6( x + 7 ) + ( y + 3 ) + ( z + 3 ) = 6
B) (x+7)2+(y+3)2+(z+3)2=3( x + 7 ) ^ { 2 } + ( y + 3 ) ^ { 2 } + ( z + 3 ) ^ { 2 } = 3
C) (x7)2+(y3)2+(z3)2=6( x - 7 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 6
D) (x7)2+(y3)2+(z3)2=3( x - 7 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 3
E) (x7)+(y3)+(z3)=3( x - 7 ) + ( y - 3 ) + ( z - 3 ) = 3
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
19
The two planes 4x3y+z=64 x - 3 y + z = 6 and 8x+7y+9z=18 x + 7 y + 9 z = 1 are perpendicular.

A)false
B)true
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
20
Because of the forces caused by its rotation, a planet is actually an oblate ellipsoid rather than a sphere. The equatorial radius is 3961 miles and the polar radius is 3957 miles. Find an equation of the ellipsoid. Assume that the center of a planet is at the origin and the xy- trace (z=0)( z = 0 ) corresponds to the equator.

A) x239612+y239612z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3961 ^ { 2 } } - \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
B) x239612+y239572+z239612=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3957 ^ { 2 } } + \frac { z ^ { 2 } } { 3961 ^ { 2 } } = 1
C) x239612+y239612+z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3961 ^ { 2 } } + \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
D) x239612y239612z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } - \frac { y ^ { 2 } } { 3961 ^ { 2 } } - \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
E) x239612+y239572+z239572=1\frac { x ^ { 2 } } { 3961 ^ { 2 } } + \frac { y ^ { 2 } } { 3957 ^ { 2 } } + \frac { z ^ { 2 } } { 3957 ^ { 2 } } = 1
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate the function w=x2yzxyzw = \frac { x ^ { 2 } - y z } { x y z } at (8,6,3)( - 8,6,3 )

A) w=1372w = \frac { 13 } { 72 }
B) w=2972w = - \frac { 29 } { 72 }
C) w=79w = - \frac { 7 } { 9 }
D) w=4172w = - \frac { 41 } { 72 }
E) w=2372w = - \frac { 23 } { 72 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate fxf _ { x } and fyf _ { y } for the function f(x,y)=7x3+xyy3f ( x , y ) = 7 x ^ { 3 } + x y - y ^ { 3 } at the point (4,6)( 4 , - 6 ) .

A) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -132
B) fx(4,6)=f _ { x } ( 4 , - 6 ) = 360 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -104
C) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = -104
D) fx(4,6)=f _ { x } ( 4 , - 6 ) = 546 and fy(4,6)=f _ { y } ( 4 , - 6 ) = 344
E) fx(4,6)=f _ { x } ( 4 , - 6 ) = 330 and fy(4,6)=f _ { y } ( 4 , - 6 ) = 112
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
23
Use the function f(x,y)=ln(10xy)8x2+6y2f ( x , y ) = \frac { \ln ( 10 x y ) } { 8 x ^ { 2 } + 6 y ^ { 2 } } to find f(2,7)f ( 2,7 )

A) f(2,7)=ln14058f ( 2,7 ) = \frac { \ln 140 } { 58 }
B) f(2,7)=ln140416f ( 2,7 ) = \frac { \ln 140 } { 416 }
C) f(2,7)=ln20326f ( 2,7 ) = \frac { \ln 20 } { 326 }
D) f(2,7)=ln70424f ( 2,7 ) = \frac { \ln 70 } { 424 }
E) f(2,7)=ln140326f ( 2,7 ) = \frac { \ln 140 } { 326 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
24
Find the first partial derivatives with respect to x, y, and z. w=9xz8x+4yw = \frac { 9 x z } { 8 x + 4 y }

A) wx=36xz(8x+4y)2,wy=36yz(8x+4y)2,wz=9x8x+4y\frac { \partial w } { \partial x } = \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { 8 x + 4 y }
B) wx=36xz8x+4y,wy=36yz8x+4y,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 x z } { 8 x + 4 y } , \frac { \partial w } { \partial y } = - \frac { 36 y z } { 8 x + 4 y } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
C) wx=36yz8x+4y,wy=36xz8x+4y,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 y z } { 8 x + 4 y } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { 8 x + 4 y } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
D) wx=36yz(8x+4y)2,wy=36xz(8x+4y)2,wz=9x8x+4y\frac { \partial w } { \partial x } = \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { 8 x + 4 y }
E) wx=36yz(8x+4y)2,wy=36xz(8x+4y)2,wz=9x(8x+4y)2\frac { \partial w } { \partial x } = \frac { 36 y z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial y } = - \frac { 36 x z } { ( 8 x + 4 y ) ^ { 2 } } , \frac { \partial w } { \partial z } = \frac { 9 x } { ( 8 x + 4 y ) ^ { 2 } }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
25
Find the domain and range of the function. f(x,y)=exyf ( x , y ) = e ^ { \frac { x } { y } }

A)Domain: all point (x,y)( x , y ) such that y0y \neq 0 Range: (,0)( - \infty , 0 )
B)Domain: all point (x,y)( x , y ) such that y0y \neq 0  <strong>Find the domain and range of the function.  f ( x , y ) = e ^ { \frac { x } { y } } </strong> A)Domain: all point  ( x , y )  such that  y \neq 0  Range:  ( - \infty , 0 )  B)Domain: all point  ( x , y )  such that  y \neq 0    Range:  ( 0 , \infty )  C)Domain: all point  ( x , y )  such that  y \neq 0,1  Range:  ( 0 , \infty )  D)Domain: all point  ( x , y )  such that  y \neq 0,1  Range:  ( - \infty , \infty )  E)Domain: all point  ( x , y )  such that  y \neq 0  Range:  ( - \infty , \infty )   Range: (0,)( 0 , \infty )
C)Domain: all point (x,y)( x , y ) such that y0,1y \neq 0,1 Range: (0,)( 0 , \infty )
D)Domain: all point (x,y)( x , y ) such that y0,1y \neq 0,1 Range: (,)( - \infty , \infty )
E)Domain: all point (x,y)( x , y ) such that y0y \neq 0 Range: (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
26
Find the slopes of the surface h(x,y)=3y2x2h ( x , y ) = 3 y ^ { 2 } - x ^ { 2 } in the x- and y- directions at the point (1,3,26)( - 1,3,26 ) .

A)slope in x-direction: 29slope in y-direction: 17
B)slope in x-direction: 2slope in y-direction: 18
C)slope in x-direction: 17slope in y-direction: 29
D)slope in x-direction: 20slope in y-direction: 20
E)slope in x-direction: 18slope in y-direction: 2
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
27
The utility function U=f(x,y)U = f ( x , y ) is a measure of utility (or satisfaction) derived by a person from the consumption of two products x and y. Suppose the utility function is U=7x2+5xy2y2U = - 7 x ^ { 2 } + 5 x y - 2 y ^ { 2 } . Determine the marginal utility of product x.

A) 5x4y5 x - 4 y
B) 14x+5y- 14 x + 5 y
C) 14x+5y2y2- 14 x + 5 y - 2 y ^ { 2 }
D) 7x2+5x4y- 7 x ^ { 2 } + 5 x - 4 y
E) 14x+54y- 14 x + 5 - 4 y
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
28
For f(x,y)f ( x , y ) , find all values of x and y such that fx(x,y)=0f _ { x } ( x , y ) = 0 and fy(x,y)=0f _ { y } ( x , y ) = 0 simultaneously. f(x,y)=16x34xy+16y3f ( x , y ) = 16 x ^ { 3 } - 4 x y + 16 y ^ { 3 }

A) (112,112)\left( - \frac { 1 } { 12 } , - \frac { 1 } { 12 } \right)
B) (112,112)\left( \frac { 1 } { 12 } , \frac { 1 } { 12 } \right)
C)(0,0)
D)Both B and C
E)Both A and B
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
29
Describe the level curves for the function f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } for the c-values given by c=0,2,4,6,8c = 0,2,4,6,8 .  <strong>Describe the level curves for the function  f ( x , y ) = x ^ { 2 } + y ^ { 2 }  for the c-values given by  c = 0,2,4,6,8  .  </strong> A)  c = 0   8 = x ^ { 2 } + y ^ { 2 }   c = 2   6 = x ^ { 2 } + y ^ { 2 }   c = 4   4 = x ^ { 2 } + y ^ { 2 }   c = 6   2 = x ^ { 2 } + y ^ { 2 }   c = 8   0 = x ^ { 2 } + y ^ { 2 }  B)  c = 0   0 = x ^ { 2 } + y ^ { 2 }   c = 2   2 = x ^ { 2 } + y ^ { 2 }   c = 4   4 = x ^ { 2 } + y ^ { 2 }   c = 6   6 = x ^ { 2 } + y ^ { 2 }   c = 8   8 = x ^ { 2 } + y ^ { 2 }  C)  c = 0   2 = x ^ { 2 } + y ^ { 2 }   c = 2   4 = x ^ { 2 } + y ^ { 2 }   c = 4   6 = x ^ { 2 } + y ^ { 2 }   c = 6   8 = x ^ { 2 } + y ^ { 2 }   c = 8   0 = x ^ { 2 } + y ^ { 2 }  D)  c = 0   4 = x ^ { 2 } + y ^ { 2 }   c = 2   6 = x ^ { 2 } + y ^ { 2 }   c = 4   8 = x ^ { 2 } + y ^ { 2 }   c = 6   0 = x ^ { 2 } + y ^ { 2 }   c = 8   2 = x ^ { 2 } + y ^ { 2 }  E)  c = 0   0 = x ^ { 2 } + y ^ { 2 }   c = 2   4 = x ^ { 2 } + y ^ { 2 }   c = 4   16 = x ^ { 2 } + y ^ { 2 }   c = 6   36 = x ^ { 2 } + y ^ { 2 }   c = 8   64 = x ^ { 2 } + y ^ { 2 }

A) c=0c = 0 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=2c = 2 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=4c = 4 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=6c = 6 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=8c = 8 0=x2+y20 = x ^ { 2 } + y ^ { 2 }
B) c=0c = 0 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=2c = 2 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=4c = 4 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=6c = 6 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=8c = 8 8=x2+y28 = x ^ { 2 } + y ^ { 2 }
C) c=0c = 0 2=x2+y22 = x ^ { 2 } + y ^ { 2 } c=2c = 2 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=4c = 4 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=6c = 6 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=8c = 8 0=x2+y20 = x ^ { 2 } + y ^ { 2 }
D) c=0c = 0 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=2c = 2 6=x2+y26 = x ^ { 2 } + y ^ { 2 } c=4c = 4 8=x2+y28 = x ^ { 2 } + y ^ { 2 } c=6c = 6 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=8c = 8 2=x2+y22 = x ^ { 2 } + y ^ { 2 }
E) c=0c = 0 0=x2+y20 = x ^ { 2 } + y ^ { 2 } c=2c = 2 4=x2+y24 = x ^ { 2 } + y ^ { 2 } c=4c = 4 16=x2+y216 = x ^ { 2 } + y ^ { 2 } c=6c = 6 36=x2+y236 = x ^ { 2 } + y ^ { 2 } c=8c = 8 64=x2+y264 = x ^ { 2 } + y ^ { 2 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
30
Test for relative extrema and saddle points. z=x28xy+y2+120xz = x ^ { 2 } - 8 x y + y ^ { 2 } + 120 x

A)saddle point at (4,16,720)( - 4 , - 16 , - 720 )
B)saddle point at (4,16,240)( 4,16,240 )
C)saddle point at (0,0,0)( 0,0,0 )
D)relative minimum at (4,16,1264)( 4 , - 16,1264 )
E)relative minimum at (16,128,2176)( 16,128,2176 )
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
31
A company manufactures two types of wood-burning stoves: a freestanding model and a fireplace-insert model. The cost function for producing x freestanding and y fireplace-insert stoves is C=30xy+160x+195y+1050C = 30 \sqrt { x y } + 160 x + 195 y + 1050 . Find the marginal costs ( C/x\partial C / \partial x and c/y\partial c / \partial y ) when x=60x = 60 and y=10y = 10 . Round your answers to two decimal places.

A) C/x=160.61,C/y=195.61\partial C / \partial x = 160.61 , \partial C / \partial y = 195.61
B) C/x=172.25,C/y=268.48\partial C / \partial x = 172.25 , \partial C / \partial y = 268.48
C) C/x=161.94,C/y=199.74\partial C / \partial x = 161.94 , \partial C / \partial y = 199.74
D) C/x=166.12,C/y=231.74\partial C / \partial x = 166.12 , \partial C / \partial y = 231.74
E) C/x=254.87,C/y=427.38\partial C / \partial x = 254.87 , \partial C / \partial y = 427.38
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
32
Describe the level curves of the function. Sketch the level curves for the given c-values. z=124x5yz = 12 - 4 x - 5 y , c = 0, 2, 4, 6

A)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)
B)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)
C)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)
D)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)
E)  <strong>Describe the level curves of the function. Sketch the level curves for the given c-values.  z = 12 - 4 x - 5 y  , c = 0, 2, 4, 6</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
33
The value A(t,r)A ( t , r ) of an investment of $4,000 after t years in an account for which the interest rate 100r% is compounded continuously is given by the function A(t,r)=4,000ertA ( t , r ) = 4,000 e ^ { r t } dollars. Write the partial derivative At\frac { \partial A } { \partial t }

A) At=4,000rent\frac { \partial A } { \partial t } = 4,000 r e ^ { n t }
B) At=4,000ert\frac { \partial A } { \partial t } = 4,000 e ^ { rt }
C) At=4,000tert\frac { \partial A } { \partial t } = 4,000 t e ^ {rt }
D) At=4,000rer(t1)\frac { \partial A } { \partial t } = 4,000 r e ^ { r ( t - 1 ) }
E) At=4,000ret\frac { \partial A } { \partial t } = 4,000 r e ^ { t }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
34
If f(x,y)=x55y10,f ( x , y ) = \sqrt { x ^ { 5 } - 5 y ^ { 10 } }, find fxf _ { x } and fy.f _ { y }.

A) fx=5x45y10,fy=x550y9f _ { x } = \sqrt { 5 x ^ { 4 } - 5 y ^ { 10 } } , \quad f _ { y } = \sqrt { x ^ { 5 } - 50 y ^ { 9 } }
B) fx=125x45y10,fy=12x550y9f _ { x } = \frac { 1 } { 2 \sqrt { 5 x ^ { 4 } - 5 y ^ { 10 } } } , \quad f _ { y } = \frac { 1 } { 2 \sqrt { x ^ { 5 } - 50 y ^ { 9 } } }
C) fx=5x4x55y10,fy=50y9x55y10f _ { x } = \frac { 5 x ^ { 4 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } } , \quad f _ { y } = - \frac { - 50 y ^ { 9 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } }
D) fx=5x42x55y10,fy=25y9x55y10f _ { x } = \frac { 5 x ^ { 4 } } { 2 \sqrt { x ^ { 5 } - 5 y ^ { 10 } } } , \quad f _ { y } = - \frac { 25 y ^ { 9 } } { \sqrt { x ^ { 5 } - 5 y ^ { 10 } } }
E) fx=5x4x55y10,fy=50y9x55y10f _ { x } = 5 x ^ { 4 } \sqrt { x ^ { 5 } - 5 y ^ { 10 } } , \quad f _ { y } = - 50 y ^ { 9 } \sqrt { x ^ { 5 } - 5 y ^ { 10 } }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
35
If f(x,y)=ln(xy4+7),f ( x , y ) = \ln \left( x y ^ { 4 } + 7 \right), find fx and fy\frac { \partial f } { \partial x } \text { and } \frac { \partial f } { \partial y }

A) fx=xxy4+7,fy=y4xy4+7\frac { \partial f } { \partial x } = \frac { x } { x y ^ { 4 } + 7 } , \frac { \partial f } { \partial y } = \frac { y ^ { 4 } } { x y ^ { 4 } + 7 }
B) fx=y4xy4+7,fy=4xy3xy4+7\frac { \partial f } { \partial x } = \frac { y ^ { 4 } } { x y ^ { 4 } + 7 } , \frac { \partial f } { \partial y } = \frac { 4 x y ^ { 3 } } { x y ^ { 4 } + 7 }
C) fx=1y4,fy=14xy3\frac { \partial f } { \partial x } = \frac { 1 } { y ^ { 4 } } , \quad \frac { \partial f } { \partial y } = \frac { 1 } { 4 x y ^ { 3 } }
D) fx=xy4+7y4,fy=4xy4+7xy3\frac { \partial f } { \partial x } = \frac { x y ^ { 4 } + 7 } { y ^ { 4 } } , \quad \frac { \partial f } { \partial y } = \frac { 4 x y ^ { 4 } + 7 } { x y ^ { 3 } }
E) fx=ln(1y4),fy=ln(14xy3)\frac { \partial f } { \partial x } = \ln \left( \frac { 1 } { y ^ { 4 } } \right) , \quad \frac { \partial f } { \partial y } = \ln \left( \frac { 1 } { 4 x y ^ { 3 } } \right)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
36
Sketch the level curves for the function below for the given cc - values c=0,1,2,3,4,5c = 0,1,2,3,4,5 . z=25x2y2z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } }

A)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the level curves for the function below for the given  c -  values  c = 0,1,2,3,4,5  .  z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
37
Describe the domain and range of the function. f(x,y)=49x2y2f ( x , y ) = \sqrt { 49 - x ^ { 2 } - y ^ { 2 } }

A)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval (0,7)
B)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval [0,7]
C)domain: The disk x2+y249x ^ { 2 } + y ^ { 2 } \leq 49 range: The interval [0,7)
D)domain: The disk x2+y249x ^ { 2 } + y ^ { 2 } \leq 49 range: The interval [0,7]
E)domain: The disk x2+y2<49x ^ { 2 } + y ^ { 2 } < 49 range: The interval [0,7)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate fxf _ { x } and fyf _ { y } for the function f(x,y)=7xyx2+y2f ( x , y ) = \frac { 7 x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } at the point (4,8)( 4,8 ) . Round your answer to two decimal places.

A) fx(4,8)=f _ { x } ( 4,8 ) = 5.01 and fy(4,8)=f _ { y } ( 4,8 ) = 0.63
B) fx(4,8)=f _ { x } ( 4,8 ) = 4.51 and fy(4,8)=f _ { y } ( 4,8 ) = 0.63
C) fx(4,8)=f _ { x } ( 4,8 ) = 3.13 and fy(4,8)=f _ { y } ( 4,8 ) = 6.26
D) fx(4,8)=f _ { x } ( 4,8 ) = 5.01 and fy(4,8)=f _ { y } ( 4,8 ) = 0.13
E) fx(4,8)=f _ { x } ( 4,8 ) = 3.13 and fy(4,8)=f _ { y } ( 4,8 ) = 6.26.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
39
A manufacturer estimates the Cobb-Douglas production function to be given by f(x,y)=100x0.75y0.25f ( x , y ) = 100 x ^ { 0.75 } y ^ { 0.25 } . Estimate the production levels when x=1500x = 1500 and y=1000y = 1000 .

A)135,540 units
B)122,560 units
C)131,601 units
D)145,330 units
E)112,745 units
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
40
Find the four second partial derivatives. Observe that the second mixed partials are equal. z=x2+8xy+6y2z = x ^ { 2 } + 8 x y + 6 y ^ { 2 }

A) 2zx2=2,2zy2=6,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0
B) 2zx2=0,2zy2=6,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
C) 2zx2=2,2zy2=12,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 12 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
D) 2zx2=0,2zy2=0,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
E) 2zx2=0,2zy2=0,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
41
A company manufactures two types of sneakers: running shoes and basketball shoes. The total revenue from x1 units of running shoes and y1 units of basketball shoes is: R=3x1210x222x1x2+50x1+96x2R = - 3 x _ { 1 } ^ { 2 } - 10 x _ { 2 } ^ { 2 } - 2 x _ { 1 } x _ { 2 } + 50 x _ { 1 } + 96 x _ { 2 } , where x1 and x2 are in thousands of units. Find x1 and x2 so as to maximize the revenue.

A) x1=20229,x2=11929x _ { 1 } = \frac { 202 } { 29 } , x _ { 2 } = \frac { 119 } { 29 }
B) x1=11929,x2=20229x _ { 1 } = \frac { 119 } { 29 } , x _ { 2 } = \frac { 202 } { 29 }
C) x1=40459,x2=23859x _ { 1 } = \frac { 404 } { 59 } , x _ { 2 } = \frac { 238 } { 59 }
D) x1=23859,x2=40459x _ { 1 } = \frac { 238 } { 59 } , x _ { 2 } = \frac { 404 } { 59 }
E) x1=11929,x2=10129x _ { 1 } = \frac { 119 } { 29 } , x _ { 2 } = \frac { 101 } { 29 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
42
Examine the function f(x,y)=x312xy+y3+4f ( x , y ) = x ^ { 3 } - 12 x y + y ^ { 3 } + 4 for relative extrema and saddle points.

A)saddle point: (0,0,4)( 0,0,4 ) ; relative minimum: (4,4,60)( 4,4 , - 60 )
B)relative minimum: (0,0,4)( 0,0,4 ) ; relative maximum: (4,4,60)( 4,4 , - 60 )
C)saddle points: (0,0,4)( 0,0,4 ) , (4,4,60)( 4,4 , - 60 )
D)saddle point: (4,4,60)( 4,4 , - 60 ) ; relative minimum: (0,0,4)( 0,0,4 )
E)relative minimum: (4,4,60)( 4,4 , - 60 ) ; relative maximum: (0,0,4)( 0,0,4 )
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
43
Use Lagrange multipliers to find the minimum distance from the circle x2+(y4)2=49x ^ { 2 } + ( y - 4 ) ^ { 2 } = 49 to the point (10,5)( - 10 , - 5 ) Round your answer to the nearest tenth.

A)20.4
B)132.0
C)418.1
D)6.5
E)41.6
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
44
Examine the function given below for relative extrema and saddle points. f(x,y)=f ( x , y ) = xy2\frac { x y } { 2 }

A)The function has a saddle point at (0,0,0)( 0,0,0 ) .
B)The function has a relative maximum at (0,0,0)( 0,0,0 ) .
C)The function has a relative minimum at (0,0,0)( 0,0,0 ) .
D)The function has a saddle point at (0,0,2)( 0,0,2 ) .
E)The function has a relative maximum at (0,0,2)( 0,0,2 ) .
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
45
Use Lagrange multipliers to find the given extremum. In each case, assume that xx and yy are positive. Maximize f(x,y)=xyf ( x , y ) = x y Constraint x+y=10x + y = 10

A) f(7,3)=21f ( 7,3 ) = 21
B) f(5,5)=25f ( 5,5 ) = 25
C) f(6,4)=24f ( 6,4 ) = 24
D) f(2,8)=16f ( 2,8 ) = 16
E) f(1,9)=9f ( 1,9 ) = 9
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
46
Use Lagrange multipliers to find the given extremum. Assume that xx and yy are positive. Minimize f(x,y)=exyf ( x , y ) = e ^ { xy } Constraint x2+y28=0x ^ { 2 } + y ^ { 2 } - 8 = 0

A) f(2,2)=e4f ( 2,2 ) = e ^ { 4 }
B) f(1,1)=e1f ( 1,1 ) = e ^ { 1 }
C) f(3,1)=e3f ( 3,1 ) = e ^ { 3 }
D) f(4,2)=e8f ( 4,2 ) = e ^ { 8 }
E) f(2,1)=e2f ( 2,1 ) = e ^ { 2 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
47
Find three positive numbers x, y, and z whose sum is 24 and the sum of the squares is a maximum.

A)x = y = z = 8
B)x = 4, y = 4, z = 16
C)x = 6, y = 6, z = 12
D)x = 3.2, y = 4.8, z = 8
E)x = 1.6, y = 9.6, z = 12.8
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
48
A rectangular box is resting on the xyx y -plane with one vertex at the origin. The opposite lies in the plane Find the dimensions that maximize the volume. (Hint: Maximize V=xyzV = x y z subject to the constraint 2x+3y+5z90=02 x + 3 y + 5 z - 90 = 0 ).

A)15 units ×\times 12 units ×\times 5 units
B)11 units ×\times 9 units ×\times 5 units
C)10 units ×\times 9 units ×\times 6 units
D)15 units ×\times 10 units ×\times 6 units
E)12 units ×\times 11 units ×\times 7 units
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
49
Examine the function given below for relative extrema and saddle points. f(x,y)=f ( x , y ) = (x1)2+(y3)2( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 }

A)The function has a relative minimum at (1,3,0)( 1,3,0 ) .
B)The function has a relative maximum at (1,3,0)( 1,3,0 )
C)The function has a saddle point at (1,3,0)( 1,3,0 ) .
D)The function has a saddle point at (0,1,3)( 0,1,3 ) .
E)The function has a saddle point at (0,1,3)( 0,1,3 )
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
50
Find three positive numbers x, y, and z whose sum is 33 and product is a maximum.

A)x = 5.5, y = 5.5, z = 22
B)x = y = z = 11
C)x = 8.25, y = 8.25, z = 16.5
D)x = 4.4, y = 6.6, z = 11
E)x = 2.2, y = 13.2, z = 17.6
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
51
Examine the function f(x,y)=5x28y23x+8y+4f ( x , y ) = 5 x ^ { 2 } - 8 y ^ { 2 } - 3 x + 8 y + 4 for relative extrema.

A)saddle point at (310,12)\left( \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
B)relative minimum at (310,12)\left( \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
C)saddle point at (310,12)\left( - \frac { 3 } { 10 } , \frac { 1 } { 2 } \right)
D)relative maximum at (310,12)\left( \frac { 3 } { 10 } , - \frac { 1 } { 2 } \right)
E)saddle point at (310,12)\left( - \frac { 3 } { 10 } , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
52
The sum of the length (denote by z) and the girth (perimeter of a cross section) of packages carried by a delivery service cannot exceed 60 inches. Find the dimensions of the rectangular package of largest volume that may be sent.

A)x = 7.5, y = 7.5, z = 20
B)x = 5, y = 5, z = 40
C)x = 10 , y = 10 , z = 20
D)x = 4, y = 6, z = 40
E)x = 2, y = 12, z = 32
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
53
Find the critical points of the function f(x,y,z)=(x4)2+(7y)2+(z2)2f ( x , y , z ) = ( x - 4 ) ^ { 2 } + ( 7 - y ) ^ { 2 } + ( z - 2 ) ^ { 2 } , and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point.

A)relative minimum at (4,7,2)( - 4 , - 7 , - 2 )
B)relative maximum at (4,7,2)( - 4 , - 7 , - 2 )
C)relative minimum at (4,7,2)( 4,7,2 )
D)relative maximum at (4,7,2)( 4,7,2 )
E)no relative extrema
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
54
A microbiologist must prepare a culture medium in which to grow a certain type of bacteria. The percent of salt contained in this medium is given by S=12xyzS = 12 x y z where x,y,x , y, and zz are the nutrient solutions to be mixed in the medium. For the bacteria to grow, the medium must be 13% salt. Nutrient solutions x,y,x , y, and zz cost $1, $2, and $3 per liter, respectively. How much of each nutrient solution should be used to minimize the cost of the culture medium?

A) x=0.06530.402Ly=0.06530.201Lz=0.06530.134L\begin{array} { l } x = \sqrt [ 3 ] { 0.065 } \approx 0.402 L \\y = \sqrt [ 3 ] { 0.065 } \approx 0.201 L \\z = \sqrt [ 3 ] { 0.065 } \approx 0.134 L\end{array}
B) x=0.03530.327Ly=0.16530.548Lz=0.01530.2466L\begin{array} { l } x = \sqrt [ 3 ] { 0.035 } \approx 0.327 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.015 } \approx 0.2466 L\end{array}
C) x=0.06530.402Ly=0.16530.548Lz=0.05530.380L\begin{array} { l } x = \sqrt [ 3 ] { 0.065 } \approx 0.402 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.055 } \approx 0.380 L\end{array}
D) x=0.02530.292Ly=0.03530.327Lz=0.11530.486L\begin{array} { l } x = \sqrt [ 3 ] { 0.025 } \approx 0.292 L \\y = \sqrt [ 3 ] { 0.035 } \approx 0.327 L \\z = \sqrt [ 3 ] { 0.115 } \approx 0.486 L\end{array}
E) x=0.16530.548Ly=0.16530.548Lz=0.26530.642L\begin{array} { l } x = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\y = \sqrt [ 3 ] { 0.165 } \approx 0.548 L \\z = \sqrt [ 3 ] { 0.265 } \approx 0.642 L\end{array}
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
55
Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x,y)f ( x , y ) at the critical point (x0,y0)\left( x _ { 0 } , y _ { 0 } \right) . Given: fxx(x0,y0)=1fyy(x0,y0)=8fxy(x0,y0)=5\begin{array} { l } f _ { x x } \left( x _ { 0 } , y _ { 0 } \right) = - 1 \\f _ { y y } \left( x _ { 0 } , y _ { 0 } \right) = - 8 \\f _ { x y } \left( x _ { 0 } , y _ { 0 } \right) = 5\end{array}

A)  relative minimum \text { relative minimum } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
B)  saddle point \text { saddle point } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
C)  relative maximum \text { relative maximum } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
D)  insufficient information to determine the nature of the function \text { insufficient information to determine the nature of the function } at (x0,y0)\left( x _ { 0 } , y _ { 0 } \right)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
56
Find the critical points of the function f(x,y,z)=3((x+8)(y7)(z3))2f ( x , y , z ) = - 3 - ( ( x + 8 ) ( y - 7 ) ( z - 3 ) ) ^ { 2 } , and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point.

A)relative minima at (8,a,b)( - 8 , a , b ) , (c,7,d)( c , 7 , d ) , (m,n,3)( m , n , 3 ) , where a,b,c,d,m,a , b , c , d , m, and nn are arbitrary real numbers
B)relative maxima at (8,a,b)( - 8 , a , b ) , (c,7,d)( c , 7 , d ) , (m,n,3)( m , n , 3 ) , where a,b,c,d,m,a , b , c , d , m, and nn are arbitrary real numbers
C)relative minimum at (8,7,3)( - 8,7,3 )
D)relative maximum at (8,7,3)( - 8,7,3 )
E)no relative extrema
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
57
Examine the function f(x,y)=4x22xy+4y2+120x+60yf ( x , y ) = 4 x ^ { 2 } - 2 x y + 4 y ^ { 2 } + 120 x + 60 y for relative extrema.

A)relative  minimum \text { minimum } at (18,12)( - 18 , - 12 )
B)relative  maximum \text { maximum } at (18,12)( - 18 , - 12 )
C)relative  minimum \text { minimum } at (18,12)( - 18,12 )
D)relative  maximum \text { maximum } at (18,12)( - 18,12 )
E)no relative extrema
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
58
Use Lagrange multipliers to minimize the function f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } subject to the following constraint. x+y+z21=0x + y + z - 21 = 0 Assume that x, y, and z are positive.

A)49
B)147
C)98
D)294
E)441
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
59
Use Lagrange multipliers to maximize the function f(x,y)=16x2y2f ( x , y ) = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } subject to the following constraint: x+y4=0x + y - 4 = 0 Assume that x, y, and z are positive.

A) 2424
B) 24\sqrt { 24 }
C) 8\sqrt { 8 }
D) 88
E)no absolute maximum
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
60
Use Lagrange multipliers to find the given extremum. In each case, assume that x,y,x , y, and zz are positive. Maximize f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z Constraints x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

A) f(23,23,23)=2f \left( \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } \right) = \sqrt { 2 }
B) f(53,53,53)=5f \left( \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } \right) = \sqrt { 5 }
C) f(33,33,33)=3f \left( \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right) = \sqrt { 3 }
D) f(3,3,3)=33f ( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } ) = 3 \sqrt { 3 }
E) f(13,13,13)=3f \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) = \sqrt { 3 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate the double integral 00xye(4x2+9y2)dxdy\int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } x y e ^ { - \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) } d x d y .

A) 1180\frac { 1 } { 180 }
B) 119\frac { 1 } { 19 }
C) 1144\frac { 1 } { 144 }
D) 172- \frac { 1 } { 72 }
E) 1108- \frac { 1 } { 108 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
62
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Data that are modeled by y=3.29x4.17y = 3.29 x - 4.17 have a negative correlation.

A)True
B)False; The data modeled by y=3.29x4.17y = 3.29 x - 4.17 have a positive correlation.
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate the double integral 010y(3x+2y)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } ( 3 x + 2 y ) d x d y . Round your answer to two decimal places, where applicable.

A)-8.83
B)11.17
C)2.00
D)1.17
E)5.00
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
64
A store manager wants to know the demand y for an energy bar as a function of price x. The daily sales for three different prices of the energy bar are shown in the table. Price, x
$ 1.02
$ 1.23
$ 1.54
Demand, y
410
365
280
(i) Use the regression capabilities of a graphing utility to find the least squares regression line for the data.
(ii) Use the model to estimate the demand when the price is $1.38.

A)(i) y=24.314583x+382.38409y = - 24.314583 x + 382.38409 ; (ii)348.708392
B)(i) y=24.314583x+382.38409y = - 24.314583 x + 382.38409 ; (ii)-416.059787
C)(i) y=382.38409x24.314583y = 382.38409 x - 24.314583 ; (ii)505.287381
D)(i) y=24.314583x382.38409y = - 24.314583 x - 382.38409 ; (ii)-416.059787
E)none of the above
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate the double integral 0403(3x+4y)dydx\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 3 x + 4 y ) d y d x .

A)134.00
B)144.00
C)154.00
D)42.00
E)24.00
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
66
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the points (10,2),(1,8),(6,9),(4,10),(16,4),(17,4)( 10,2 ) , ( 1,8 ) , ( 6,9 ) , ( 4,10 ) , ( 16,4 ) , ( 17,4 ) . Round your answer to three decimal places.

A) y=0.383x+9.524y = - 0.383 x + 9.524
B) y=0.373x+9.514y = - 0.373 x + 9.514
C) y=0.373x+9.524y = - 0.373 x + 9.524
D) y=0.363x+9.524y = - 0.363 x + 9.524
E) y=0.363x+9.514y = - 0.363 x + 9.514
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
67
Sketch the region RR whose area is given by the following double integral. 04x2dydx\int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x

A)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the region  R  whose area is given by the following double integral.  \int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } d y d x </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
68
A manufacturer has an order for 1100 units of fine paper that can be produced at two locations. Let x1x _ { 1 } and x2x _ { 2 } be the numbers of units produced at the two plants. Find the number of units that should be produced at each plant to minimize the cost if the cost function is given by C=0.2x12+25x1+0.05x22+12x2C = 0.2 x _ { 1 } ^ { 2 } + 25 x _ { 1 } + 0.05 x _ { 2 } ^ { 2 } + 12 x _ { 2 } .

A) x1=388x _ { 1 } = 388 units and x2=906x _ { 2 } = 906 units
B) x1=906x _ { 1 } = 906 units and x2=194x _ { 2 } = 194 units
C) x1=194x _ { 1 } = 194 units and x2=906x _ { 2 } = 906 units
D) x1=194x _ { 1 } = 194 units and x2=1812x _ { 2 } = 1812 units
E) x1=1812x _ { 1 } = 1812 units and x2=388x _ { 2 } = 388 units
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
69
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the given points. (4,1),(2,0),(2,4),(4,5)( - 4 , - 1 ) , ( - 2,0 ) , ( 2,4 ) , ( 4,5 )

A) y=1.8x+5y = 1.8 x + 5
B) y=1.2x+2y = 1.2 x + 2
C) y=0.5x+1y = 0.5 x + 1
D) y=0.8x+2y = 0.8 x + 2
E) y=0.2x+1y = 0.2 x + 1
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the double integral 060x2x2+8dydx\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { x } \frac { 2 } { x ^ { 2 } + 8 } d y d x .

A) ln43\ln 43
B) ln43ln8\ln 43 - \ln 8
C) ln44\ln 44
D) ln44+ln8\ln 44 + \ln 8
E) ln44ln8\ln 44 - \ln 8
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
71
Find the least squares regression line for the points (1,0) , (6,6) , (11,12).

A) y=65x65y = \frac { 6 } { 5 } x - \frac { 6 } { 5 }
B) y=65x30133y = \frac { 6 } { 5 } x - \frac { 30 } { 133 }
C) y=30133x65y = \frac { 30 } { 133 } x - \frac { 6 } { 5 }
D) y=30133x30133y = \frac { 30 } { 133 } x - \frac { 30 } { 133 }
E)none of the above
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate the following integral. 3xx34yxdy\int _ { 3 x } ^ { x ^ { 3 } } \frac { 4 y } { x } d y

A) 2(x59x)2 \left( x ^ { 5 } - 9 x \right)
B) 4(x59x)4 \left( x ^ { 5 } - 9 x \right)
C) 2(x53x)2 \left( x ^ { 5 } - 3 x \right)
D) 2(9xx5)2 \left( 9 x - x ^ { 5 } \right)
E)none of the above
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
73
An agronomist used four test plots to determine the relationship between the wheat yield yy (in bushels per acre) and the amount of fertilizer xx (in pounds per acre). The results are shown in the table.  Fertilizer, x100150200250 Yield, y35445056\begin{array} { | c | c | c | c | c | } \hline \text { Fertilizer, } x & 100 & 150 & 200 & 250 \\\hline \text { Yield, } y & 35 & 44 & 50 & 56 \\\hline\end{array} (a) Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the data. (b) Estimate the yield for a fertilizer application of 160 pounds per acre.

A) y=0.15x+15.1y = 0.15 x + 15.1
B) y=0.155x+21.1y = 0.155 x + 21.1
C) y=0.138x+22.1y = 0.138 x + 22.1
D) y=0.052x+34y = 0.052 x + 34
E) y=0.234x+17.5y = 0.234 x + 17.5
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
74
Evaluate the double integral 02y2y(1+x2+y2)dxdy\int _ { 0 } ^ { 2 } \int _ { y } ^ { 2 y } \left( 1 + x ^ { 2 } + y ^ { 2 } \right) d x d y . Round your answer to two decimal places, where applicable.

A)7.33
B)14.33
C)16.33
D)15.33
E)14.83
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
75
Find the sum of the squared errors for the linear model f(x)f ( x ) and the quadratic model g(x)g ( x ) using the given points. f(x)=1.6x+6,g(x)=0.29x2+2.2x+6(3,2),(2,2),(1,4),(0,6),(18)\begin{array} { l } f ( x ) = 1.6 x + 6 , g ( x ) = 0.29 x ^ { 2 } + 2.2 x + 6 \\( - 3,2 ) , ( - 2,2 ) , ( - 1,4 ) , ( 0,6 ) , ( 18 )\end{array}

A) S=1.5S = 1.5 ; S=0.7159S = 0.7159
B) S=1.6S = 1.6 ; S=0.8259S = 0.8259
C) S=1.2S = 1.2 ; S=0.8623S = 0.8623
D) S=1.3S = 1.3 ; S=0.4160S = 0.4160
E) S=1.1S = 1.1 ; S=0.7621S = 0.7621
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
76
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. A linear regression model with a positive correlation will have a slope that is greater than 0.

A)True
B)False
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
77
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. When the correlation coefficient is r0.98781r \approx - 0.98781 , the model is a good fit.

A)False
B)True
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
78
A rancher plans to use an existing stone wall and the side of a barn as a boundary for two adjacent rectangular corrals. Fencing for the perimeter costs 15 per foot. To separate the corrals, a fence that costs 6 per foot will divide the region. The total area of the two corrals is to be 60006000 square feet. Use Lagrange multipliers to find the dimensions that will minimize the cost of the fencing.  <strong>A rancher plans to use an existing stone wall and the side of a barn as a boundary for two adjacent rectangular corrals. Fencing for the perimeter costs 15 per foot. To separate the corrals, a fence that costs 6 per foot will divide the region. The total area of the two corrals is to be  6000  square feet. Use Lagrange multipliers to find the dimensions that will minimize the cost of the fencing.  </strong> A)dimensions:  50  feet by  60  feet B)dimensions:  60  feet by  50  feet C)dimensions:  25  feet by  60  feet D)dimensions:  30  feet by  50  feet E)dimensions:  25  feet by  30  feet

A)dimensions: 5050 feet by 6060 feet
B)dimensions: 6060 feet by 5050 feet
C)dimensions: 2525 feet by 6060 feet
D)dimensions: 3030 feet by 5050 feet
E)dimensions: 2525 feet by 3030 feet
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
79
Use a double integral to find the area of the region bounded by the graphs of y=x13/2y = x ^ { 13 / 2 } and y=xy = x .

A) 22
B) 1111
C) 132\frac { 13 } { 2 }
D) 1315\frac { 13 } { 15 }
E) 1130\frac { 11 } { 30 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
80
Find the least squares regression line for the given points. Then plot the points and sketch the regression line. (2,1),(0,0),(2,3)( - 2 , - 1 ) , ( 0,0 ) , ( 2,3 )

A) y=x+23y = x + \frac { 2 } { 3 }
B) y=x23y = x - \frac { 2 } { 3 }
C) y=x13y = x - \frac { 1 } { 3 }
D) y=x12y = x - \frac { 1 } { 2 }
E) y=x+13y = x + \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 92 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 92 flashcards in this deck.