Deck 8: Limits and Derivatives

Full screen (f)
exit full mode
Question
Complete the table and use the result to estimate the limit. limx5x+5x2+2x15\lim _ { x \rightarrow - 5 } \frac { x + 5 } { x ^ { 2 } + 2 x - 15 } x5.15.015.0014.9994.994.9f(x)\begin{array}{lllllll}x&-5.1 & -5.01 & -5.001 & -4.999 & -4.99 & -4.9\\f(x)\end{array}

A)-0.125000
B)0.375000
C)0.250000
D)0.500000
E)-0.500000
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the limit (if it exists): limΔx0(x+Δx)213(x+Δx)+13(x213x+13)Δx\lim _ { \Delta x \rightarrow 0 } \frac { ( x + \Delta x ) ^ { 2 } - 13 ( x + \Delta x ) + 13 - \left( x ^ { 2 } - 13 x + 13 \right) } { \Delta x }

A) 13x3132x2+13x\frac { 1 } { 3 } x ^ { 3 } - \frac { 13 } { 2 } x ^ { 2 } + 13 x
B) x313x2+13xx ^ { 3 } - 13 x ^ { 2 } + 13 x
C)0
D) 2x132 x - 13
E) x213x+13x ^ { 2 } - 13 x + 13
Question
Find limx61(x6)2\lim _ { x \rightarrow 6 ^ { - } } \frac { 1 } { ( x - 6 ) ^ { 2 } } .

A)6
B) - \infty
C)0
D)-6
E)inf
Question
Find limx41x+4\lim _ { x \rightarrow - 4 ^ { - } } \frac { 1 } { x + 4 } .

A)4
B)0
C) - \infty
D)-4
E)inf
Question
Determine whether the given function is continuous. If it is not, identify where it is discontinuous. y=7x29x+3y = 7 x ^ { 2 } - 9 x + 3

A)discontinuous at x=4x = 4
B)discontinuous at x=0x = 0
C)discontinuous at x=4x = - 4
D)discontinuous at x=8x = 8
E)continuous everywhere
Question
Suppose that limxcf(x)=9\lim _ { x \rightarrow c } f ( x ) = 9 and limxcg(x)=10\lim _ { x \rightarrow c } g ( x ) = 10 . Find the following limit: limxc[f(x)g(x)]\lim _ { x \rightarrow c } [ f ( x ) g ( x ) ]

A)9
B)19
C)-1
D)90
E)-10
Question
Determine whether the given function is continuous. If it is not, identify where it is discontinuous and which condition fails to hold. You can verify your conclusions by graphing the function with a graphing utility, if one is available. y=8x7x2+36y = \frac { 8 x - 7 } { x ^ { 2 } + 36 }

A)discontinuous at x=36x = - 36
B)discontinuous at x=6x = 6
C)discontinuous at x=6x = - 6
D)discontinuous at x=36x = 36
E)continuous everywhere
Question
Determine the following limit. (Hint: Use the graph of the function.) limx21x2\lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }  <strong>Determine the following limit. (Hint: Use the graph of the function.)  \lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }   </strong> A)0 B)does not exist C)2 D)-2 E)-4 <div style=padding-top: 35px>

A)0
B)does not exist
C)2
D)-2
E)-4
Question
Let f(x)={x2+2,x11,x=1f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 2 , & x \neq 1 \\1 , & x = 1\end{array} \right. . Determine the following limit. (Hint: Use the graph of the function.) limx1f(x)\lim _ { x \rightarrow \mathbb { 1 } } f ( x )  <strong>Let  f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 2 , & x \neq 1 \\ 1 , & x = 1 \end{array} \right.  . Determine the following limit. (Hint: Use the graph of the function.)  \lim _ { x \rightarrow \mathbb { 1 } } f ( x )   </strong> A)3 B)1 C)2 D)4 E)does not exist. <div style=padding-top: 35px>

A)3
B)1
C)2
D)4
E)does not exist.
Question
Complete the table and use the result to estimate the limit. limx18x+102x1\lim _ { x \rightarrow 1 } \frac { \sqrt { - 8 x + 10 } - \sqrt { 2 } } { x - 1 } x0.90.990.9991.0011.011.1f(x)\begin{array}{lllllll}x & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1\\f(x)\end{array}

A)2.828427
B)-2.703427
C)-2.828427
D)2.66176
E)2.578427
Question
Describe the interval (( s )) on which the function f(x)=x4x216f ( x ) = \frac { x - 4 } { x ^ { 2 } - 16 } is continuous.

A) (,4],(4,4]&(4,)( - \infty , - 4 ] , ( - 4,4 ] \& ( 4 , \infty )
B) (,4),(4,4)&(4,)( - \infty , 4 ) , ( 4,4 ) \& ( 4 , \infty )
C) (,4),(4,4)&(4,)( - \infty , - 4 ) , ( - 4,4 ) \& ( 4 , \infty )
D) (,4],(4,4)&(4,)( - \infty , - 4 ] , ( - 4,4 ) \& ( 4 , \infty )
E) (,4],[4,4]&[4,)( - \infty , - 4 ] , [ - 4,4 ] \& [ 4 , \infty )
Question
Suppose that limxcf(x)=11\lim _ { x \rightarrow c } f ( x ) = 11 and limxcg(x)=15\lim _ { x \rightarrow c } g ( x ) = - 15 . Find the following limit: limxc[f(x)+g(x)]\lim _ { x \rightarrow c } [ f ( x ) + g ( x ) ]

A)-165
B)26
C)0
D)-4
E)-15
Question
Consider a certificate of deposit that pays 10% (annual percentage rate) on an initial deposit of $1000. The balance after 10 years is A=1000(1+01x)10/xA = 1000 ( 1 + 0 \cdot 1 x ) ^ { 10 / x } . Estimate limx0+A\lim _ { x \rightarrow 0 ^ { + } } A , where xx is the length of the compounding period (in years). Round your answer to the nearest hundredth.

A)2718.28
B)367.88
C)1000.00
D)10,000.00
E)1100.00
Question
Graph the function with a graphing utility and use it to predict the limit. Check your work either by using the table feature of the graphing utility or by finding the limit algebraically. limx8x34x221xx215x+56\lim _ { x \rightarrow 8 } \frac { x ^ { 3 } - 4 x ^ { 2 } - 21 x } { x ^ { 2 } - 15 x + 56 }

A) 1511\frac { 15 } { 11 }
B) 8888
C) 1115\frac { 11 } { 15 }
D)0
E)does not exist
Question
Find the x-values (if any) at which the function f(x)=13x2+6x+5f ( x ) = - 13 x ^ { 2 } + 6 x + 5 is not continuous. Which of the discontinuities are removable?

A)continuous everywhere
B) x=5x = 5 , removable
C) x=313x = \frac { 3 } { 13 } , removable
D) x=313x = \frac { 3 } { 13 } , not removable
E)both B and C
Question
A graph of y=f(x)y = f ( x ) is shown and a c-value is given. For this problem, use the graph to find limxcf(x)\lim _ { x \rightarrow c } f ( x ) . c=2c = - 2  <strong>A graph of  y = f ( x )  is shown and a c-value is given. For this problem, use the graph to find  \lim _ { x \rightarrow c } f ( x )  .  c = - 2   </strong> A)0 B)2 C)-6 D)-4 E)does not exist <div style=padding-top: 35px>

A)0
B)2
C)-6
D)-4
E)does not exist
Question
The cost (in dollars) of removing p%p\% of the pollutants from the water in a small lake is given by C=23,000p300p,0p<300C = \frac { 23,000 p } { 300 - p } , 0 \leq p < 300 . Evaluate limp300C\lim _ { p \rightarrow 300 ^ { - } } C .

A) \infty
B) 23,00023,000
C) 00
D) - \infty
E) 23,000- 23,000
Question
Complete the table and use the result to estimate the limit. limx21x10+112x+2\lim _ { x \rightarrow - 2 } \frac { \frac { 1 } { x - 10 } + \frac { 1 } { 12 } } { x + 2 } x2.12.012.0011.9991.991.9f(x)\begin{array}{llllll}x&-2.1 & -2.01 & -2.001 & -1.999 & -1.99 & -1.9\\f(x)\end{array}

A)0.123056
B)0.103056
C)-0.136944
D)-0.006944
E)-0.116944
Question
Use the graph of y=f(x)y = f ( x ) and the given c-value to find limxc+f(x)\lim _ { x \rightarrow c ^ { + } } f ( x ) . c=4.5c = - 4.5  <strong>Use the graph of  y = f ( x )  and the given c-value to find  \lim _ { x \rightarrow c ^ { + } } f ( x )  .  c = - 4.5   </strong> A)  - 6  B)-5 C)-8 D)3 E)does not exist <div style=padding-top: 35px>

A) 6- 6
B)-5
C)-8
D)3
E)does not exist
Question
Find the limit: limx11+x2x11\lim _ { x \rightarrow 11 ^ { + } } \frac { x - 2 } { x - 11 } .

A) - \infty
B) \infty
C)0
D)-1
E)1
Question
Find the slope of the tangent line to the graph of the function at the given point. f(x)=5x27,(3,52)f ( x ) = - 5 x ^ { 2 } - 7 , \quad ( - 3 , - 52 )

A) 3030  <strong>Find the slope of the tangent line to the graph of the function at the given point.  f ( x ) = - 5 x ^ { 2 } - 7 , \quad ( - 3 , - 52 ) </strong> A)  30    B)  - 5  C)  7  D)  - 45  E)none of the above <div style=padding-top: 35px>
B) 5- 5
C) 77
D) 45- 45
E)none of the above
Question
Sketch the graph of the function f(x)=x24x2f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 } and describe the interval(s) on which the function is continuous.

A) (,2]( - \infty , 2 ] and [2,)[ 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices <div style=padding-top: 35px>
B) (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices <div style=padding-top: 35px>
C) (,2]( - \infty , 2 ] and [2,)[ - 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices <div style=padding-top: 35px>
D) (,2)( - \infty , 2 ) and (2,)( 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices <div style=padding-top: 35px>
E)none of these choices
Question
Find an equation of the line that is tangent to the graph of f and parallel to the given line. f(x)=5x2,20xy+3=0f ( x ) = 5 x ^ { 2 } , \quad 20 x - y + 3 = 0

A) y=20x20y = 20 x - 20  <strong>Find an equation of the line that is tangent to the graph of f and parallel to the given line.  f ( x ) = 5 x ^ { 2 } , \quad 20 x - y + 3 = 0 </strong> A)  y = 20 x - 20    B)  y = 20 x + 20  C)  y = - 20 x + 20  D)  y = - 20 x - 20  E)none of the above <div style=padding-top: 35px>
B) y=20x+20y = 20 x + 20
C) y=20x+20y = - 20 x + 20
D) y=20x20y = - 20 x - 20
E)none of the above
Question
For the function given, find f(x)f ^ { \prime } ( x ) f(x)=x36x9f ( x ) = x ^ { 3 } - 6 x - 9

A) x26x ^ { 2 } - 6
B) 3x293 x ^ { 2 } - 9
C) 3x263 x ^ { 2 } - 6
D) 3x36x3 x ^ { 3 } - 6 x
E) x36x9x ^ { 3 } - 6 x - 9
Question
Find the derivative of the following function using the limiting process. f(x)=2x+7f ( x ) = \frac { 2 } { x + 7 }

A) f(x)=2(x+7)2f ^ { \prime } ( x ) = \frac { 2 } { ( x + 7 ) ^ { 2 } }  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = \frac { 2 } { x + 7 } </strong> A)  f ^ { \prime } ( x ) = \frac { 2 } { ( x + 7 ) ^ { 2 } }    B)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) ^ { 2 } }  C)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) }  D)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x + 7 ) ^ { 2 } }  E)none of the above <div style=padding-top: 35px>
B) f(x)=2(x7)2f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) ^ { 2 } }
C) f(x)=2(x7)f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) }
D) f(x)=2(x+7)2f ^ { \prime } ( x ) = - \frac { 2 } { ( x + 7 ) ^ { 2 } }
E)none of the above
Question
Find the x-values (if any) at which the function f(x)=x+6x2+10x+24f ( x ) = \frac { x + 6 } { x ^ { 2 } + 10 x + 24 } is not continuous. Which of the discontinuities are removable?

A)no points of discontinuity
B) x=6x = - 6 (not removable), x=4x = - 4 (removable)
C) x=6x = - 6 (removable), x=4x = - 4 (not removable)
D)no points of continuity
E) x=6x = - 6 (not removable), x=4x = - 4 (not removable)
Question
Find the x-values (if any) at which f(x) is not continuous and identify whether they are removable or nonremovable. f(x)={2x+3,x<1x2,x1f ( x ) = \left\{ \begin{array} { l l } - 2 x + 3 , & x < 1 \\x ^ { 2 } , & x \geq 1\end{array} \right.

A)x = 1 is a removable discontinuity
B)x = 1 is a nonremovable discontinuity
C)x = -1 is a removable discontinuity
D)x = -1 is a nonremovable discontinuity
E)f(x)has no discontinuities
Question
Find the derivative of the following function using the limiting process. f(x)=3x2+10xf ( x ) = - 3 x ^ { 2 } + 10 x

A) 3- 3  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = - 3 x ^ { 2 } + 10 x </strong> A)  - 3    B)  - 6 x + 10  C)  - 6 x - 10  D)  - 6 x  E)none of the above <div style=padding-top: 35px>
B) 6x+10- 6 x + 10
C) 6x10- 6 x - 10
D) 6x- 6 x
E)none of the above
Question
Describe the interval(s) on which the function f(x)={x2100,10x+100,f ( x ) = \left\{ \begin{array} { l } x ^ { 2 } - 100 ,\\10 x + 100,\end{array} \right. x0x>0\begin{array} { l } x \leq 0 \\x > 0\end{array} is continuous.

A) (,0]( - \infty , 0 ] and (0,)( 0 , \infty )
B) (,0)( - \infty , 0 ) and [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 ) and (0,)( 0 , \infty )
D) (,)( - \infty , \infty )
E)none of these choices
Question
Find the derivative of the function. f(x)=8x32x21f ( x ) = - 8 x ^ { 3 } - 2 x ^ { 2 } - 1

A) f(x)=24x24xf ^ { \prime } ( x ) = - 24 x ^ { 2 } - 4 x
B) f(x)=16x22xf ^ { \prime } ( x ) = - 16 x ^ { 2 } - 2 x
C) f(x)=16x2x2f ^ { \prime } ( x ) = - 16 x - 2 x ^ { 2 }
D) f(x)=24x24x1f ^ { \prime } ( x ) = - 24 x ^ { 2 } - 4 x - 1
E)none of the above
Question
Find an equation of the a line that is tangent to the graph of f and parallel to the given line. f(x)=8x3,216xy+5=0f ( x ) = 8 x ^ { 3 } , \quad 216 x - y + 5 = 0

A) y=216x+432y = - 216 x + 432  <strong>Find an equation of the a line that is tangent to the graph of f and parallel to the given line.  f ( x ) = 8 x ^ { 3 } , \quad 216 x - y + 5 = 0 </strong> A)  y = - 216 x + 432    B)  y = 216 x - 432  C)  y = - 216 x - 432  D)  y = 216 x + 432  E)both B and D <div style=padding-top: 35px>
B) y=216x432y = 216 x - 432
C) y=216x432y = - 216 x - 432
D) y=216x+432y = 216 x + 432
E)both B and D
Question
Find the derivative of the function. f(x)=x5f ( x ) = x ^ { 5 }

A) f(x)=5x5f ^ { \prime } ( x ) = 5 x ^ { 5 }
B) f(x)=5x4f ^ { \prime } ( x ) = 5 x ^ { 4 }
C) f(x)=4x4f ^ { \prime } ( x ) = 4 x ^ { 4 }
D) f(x)=4x6f ^ { \prime } ( x ) = 4 x ^ { 6 }
E)none of the above
Question
Use the limit definition to find the slope of the tangent line to the graph of f(x)=4x+25f ( x ) = \sqrt { 4 x + 25 } at the point (6,7)( 6,7 ) .

A) 27\frac { 2 } { 7 }
B) 27- \frac { 2 } { 7 }
C) 17\frac { 1 } { 7 }
D) 17- \frac { 1 } { 7 }
E) 16\frac { 1 } { 6 }
Question
Find constants a and b such that the function f(x)={18,x3ax+b,3<x<918,x9f ( x ) = \left\{ \begin{array} { l l } 18 , & x \leq - 3 \\ax + b , & - 3 < x < 9 \\- 18 , & x \geq 9\end{array} \right. is continuous on the entire real line.

A)a = 3 , b = 0
B)a = 3 , b = 9
C)a = 3 , b = -9
D)a = -3 , b = -9
E)a = -3 , b = 9
Question
A deposit of $6500 is made in an account that pays 6% compounded every 3 months. The amount AA in the account after tt years is A=6500(1+0.015)[123t]A = 6500 ( 1 + 0.015 ) ^ { \left[ \frac { 12 } { 3 } t \right] } , t 0\geq 0 . What are the points of discontinuity of graph of A=6500(1+0.015)[123t]A = 6500 ( 1 + 0.015 ) ^ { \left[ \frac { 12 } { 3 } t \right] } ? (Here, the brackets indicate the greatest integer function.)

A) 0,13,23,11,0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 1 } { 1 } , \ldots
B) 0,1,2,0,1,2 , \ldots
C) 3,6,9,3,6,9 , \ldots
D) 1,2,3,1,2,3 , \ldots
E) 14,12,34,\frac { 1 } { 4 } , \frac { 1 } { 2 } , \frac { 3 } { 4 } , \ldots
Question
Find the slope of the tangent line to the graph of the function below at the given point. f(x)=2x+7,(0,7)f ( x ) = - 2 x + 7 , \quad ( 0,7 )

A) 2- 2  <strong>Find the slope of the tangent line to the graph of the function below at the given point.  f ( x ) = - 2 x + 7 , \quad ( 0,7 ) </strong> A)  - 2    B)  2  C)  - 7  D)  5  E)none of the above <div style=padding-top: 35px>
B) 22
C) 7- 7
D) 55
E)none of the above
Question
Find the slope of the tangent line to the graph of the function at the given point. f(x)=4x2+4,(3,40)f ( x ) = 4 x ^ { 2 } + 4 , \quad ( 3,40 )

A) 2424  <strong>Find the slope of the tangent line to the graph of the function at the given point.  f ( x ) = 4 x ^ { 2 } + 4 , \quad ( 3,40 ) </strong> A)  24    B)  4  C)  - 4  D)  36  E)none of the above <div style=padding-top: 35px>
B) 44
C) 4- 4
D) 3636
E)none of the above
Question
Identify a function f(x)f ( x ) that has the given characteristics and then sketch the function. f(0)=3;f(x)=4,<x<f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty

A) f(x)=4x+3f ( x ) = 4 x + 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4    <div style=padding-top: 35px>
B) f(x)=4x+3f ( x ) = - 4 x + 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4    <div style=padding-top: 35px>
C) f(x)=4x3f ( x ) = 4 x - 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4    <div style=padding-top: 35px>
D) f(x)=4x3f ( x ) = - 4 x - 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4    <div style=padding-top: 35px>
E) f(x)=3x+4f ( x ) = 3 x + 4  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4    <div style=padding-top: 35px>
Question
Find the x-values (if any) at which the function f(x)=xx2+16f ( x ) = \frac { x } { x ^ { 2 } + 16 } is not continuous. Which of the discontinuities are removable?

A)4 and -4, not removable
B)continuous everywhere
C)4 and -4, removable
D)discontinuous everywhere
E)none of the above
Question
Find the derivative of the following function using the limiting process. f(x)=3x4f ( x ) = \sqrt { 3 x - 4 }

A) f(x)=323x4f ^ { \prime } ( x ) = \frac { 3 } { 2 \sqrt { 3 x - 4 } }  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = \sqrt { 3 x - 4 } </strong> A)  f ^ { \prime } ( x ) = \frac { 3 } { 2 \sqrt { 3 x - 4 } }    B)  f ^ { \prime } ( x ) = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }  C)  f ^ { \prime } ( x ) = \frac { 3 } { 2 } ( 3 x - 4 ) ^ { 1 / 2 }  D)  f ^ { \prime } ( x ) = - \frac { 3 } { \sqrt { 3 x - 4 } }  E)either B or D <div style=padding-top: 35px>
B) f(x)=323x4f ^ { \prime } ( x ) = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }
C) f(x)=32(3x4)1/2f ^ { \prime } ( x ) = \frac { 3 } { 2 } ( 3 x - 4 ) ^ { 1 / 2 }
D) f(x)=33x4f ^ { \prime } ( x ) = - \frac { 3 } { \sqrt { 3 x - 4 } }
E)either B or D
Question
Find the derivative of the function f(x)=x2x20x+4f ( x ) = \frac { x ^ { 2 } - x - 20 } { x + 4 } . State which differentiation rule(s) you used to find the derivative.

A)1, Product Rule.
B)1, Quotient Rule
C)5, Product Rule.
D)5, Quotient Rule
E)x+3, Product Rule.
Question
Find the derivative of the function. f(x)=1x4f ( x ) = \frac { 1 } { x ^ { 4 } }

A) f(x)=3x5f ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 5 } }
B) f(x)=4x3f ^ { \prime } ( x ) = - \frac { 4 } { x ^ { 3 } }
C) f(x)=4x5f ^ { \prime } ( x ) = - \frac { 4 } { x ^ { 5 } }
D) f(x)=5x5f ^ { \prime } ( x ) = - \frac { 5 } { x ^ { 5 } }
E)none of the above
Question
Find the marginal cost for producing x units. (The cost is measured in dollars.) C=205,000+9800xC = 205,000 + 9800 x

A) $9800\$ 9800
B) $9850\$ 9850
C) $8800\$ 8800
D) $8850\$ 8850
E) $9750\$ 9750
Question
Differentiate the given function. y=54x4y = \frac { 5 } { 4 x ^ { 4 } }

A) 20x5- \frac { 20 } { x ^ { 5 } }
B) 5x4- \frac { 5 } { x ^ { 4 } }
C) 20x4- \frac { 20 } { x ^ { 4 } }
D) 5x5- \frac { 5 } { x ^ { 5 } }
E) 4x5- \frac { 4 } { x ^ { 5 } }
Question
The profit (in dollars) from selling x units of calculus textbooks is given by p=0.05x2+20x3000p = - 0.05 x ^ { 2 } + 20 x - 3000 . Find the additional profit when the sales increase from 149 to 150 units. Round your answer to two decimal places.

A)$5.05
B)$20.00
C)$5.15
D)$10.20
E)$10.00
Question
The profit (in dollars) from selling x units of calculus textbooks is given by p=0.05x2+20x1000p = - 0.05 x ^ { 2 } + 20 x - 1000 . Find the marginal profit when x=149x = 149 . Round your answer to two decimal places.

A)$34.90
B)$869.95
C)$5.10
D)$20.00
E)$864.80
Question
When the price of a glass of lemonade at a lemonade stand was $1.75, 400 glasses were sold. When the price was lowered to $1.50, 500 glasses were sold. Assume that the demand function is linear and that the marginal and fixed costs are $0.10 and $ 25, respectively. Find the marginal profit when 300 glasses of lemonade are sold and when 700 glasses of lemonade are sold.

A) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = 1.15 , P ^ { \prime } ( 700 ) = - 0.85
B) P(300)=0.85,P(700)=1.15P ^ { \prime } ( 300 ) = - 0.85 , P ^ { \prime } ( 700 ) = 1.15
C) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = 1.15 , P ^ { \prime } ( 700 ) = 0.85
D) P(300)=0.85,P(700)=1.15P ^ { \prime } ( 300 ) = 0.85 , P ^ { \prime } ( 700 ) = - 1.15
E) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = - 1.15 , P ^ { \prime } ( 700 ) = - 0.85
Question
Find the derivative of the function s(t)=7x1+4s ( t ) = 7 x ^ { - 1 } + 4 .

A) s(t)=7x2s ^ { \prime } ( t ) = \frac { 7 } { x ^ { 2 } }
B) s(t)=7x2s ^ { \prime } ( t ) = - \frac { 7 } { x ^ { 2 } }
C) s(t)=7x2+4s ^ { \prime } ( t ) = - \frac { 7 } { x ^ { 2 } } + 4
D) s(t)=7x2+4s ^ { \prime } ( t ) = \frac { 7 } { x ^ { 2 } } + 4
E) s(t)=7x2s ^ { \prime } ( t ) = 7 x ^ { - 2 }
Question
Determine the point(s), (if any), at which the graph of the function has a horizontal tangent. y(x)=x4108x+1y ( x ) = x ^ { 4 } - 108 x + 1

A) 00
B) 00 and 33
C) 00 and 3- 3
D) 33
E)There are no points at which the graph has a horizontal tangent.
Question
Find the marginal revenue for producing x units. (The revenue is measured in dollars.) R=50x0.5x2R = 50 x - 0.5 x ^ { 2 }

A) 50x dollars 50 - x \text { dollars }
B) 50+x dollars 50 + x \text { dollars }
C) 50 dollars 50 \text { dollars }
D) 500.5x dollars 50 - 0.5 x \text { dollars }
E) 50+0.5x dollars 50 + 0.5 x \text { dollars }
Question
When the price of a glass of lemonade at a lemonade stand was $1.75, 400 glasses were sold. When the price was lowered to $1.50, 500 glasses were sold. Assume that the demand function is linear and that the marginal and fixed costs are $0.10 and $ 25, respectively. Find the profit P as a function of x, the number of glasses of lemonade sold.

A) P=0.0025x2+2.65x25P = - 0.0025 x ^ { 2 } + 2.65 x - 25
B) P=0.0025x2+2.65x25P = 0.0025 x ^ { 2 } + 2.65 x - 25
C) P=0.0025x2+2.65x+25P = - 0.0025 x ^ { 2 } + 2.65 x + 25
D) P=0.0025x22.65x25P = 0.0025 x ^ { 2 } - 2.65 x - 25
E) P=0.0025x2+2.65x+25P = - 0.0025 x ^ { 2 } + 2.65 x + 25 .
Question
Find the marginal profit for producing x units. (The profit is measured in dollars.) P=2x2+72x145P = - 2 x ^ { 2 } + 72 x - 145

A) 4x+72 dollars - 4 x + 72 \text { dollars }
B) 4x+72 dollars 4 x + 72 \text { dollars }
C) 4x72 dollars - 4 x - 72 \text { dollars }
D) 4x72 dollars 4 x - 72 \text { dollars }
E) 4+72x dollars - 4 + 72 x \text { dollars }
Question
The cost C (in dollars) of producing x units of a product is given by C=3.6x+500C = 3.6 \sqrt { x } + 500 . Find the additional cost when the production increases from 9 t o10.

A) $0.58\$ 0.58
B) $0.36\$ 0.36
C) $0.62\$ 0.62
D) $0.12\$ 0.12
E) $0.64\$ 0.64
Question
Use the product Rule to find the derivative of the function f(x)=x(x2+3)f ( x ) = x \left( x ^ { 2 } + 3 \right) .

A) f(x)=3x2+3f ^ { \prime } ( x ) = 3 x ^ { 2 } + 3
B) f(x)=3x2+1f ^ { \prime } ( x ) = 3 x ^ { 2 } + 1
C) f(x)=x2+3f ^ { \prime } ( x ) = x ^ { 2 } + 3
D) f(x)=3x23f ^ { \prime } ( x ) = 3 x ^ { 2 } - 3
E) f(x)=3x21f ^ { \prime } ( x ) = 3 x ^ { 2 } - 1
Question
Find the derivative of the function f(x)=x3+6x3f ( x ) = \frac { x ^ { 3 } + 6 x } { 3 } .

A) f(x)=x2+2f ^ { \prime } ( x ) = x ^ { 2 } + 2
B) f(x)=x2+6f ^ { \prime } ( x ) = x ^ { 2 } + 6
C) f(x)=x2+2xf ^ { \prime } ( x ) = x ^ { 2 } + 2 x
D) f(x)=x2+xf ^ { \prime } ( x ) = x ^ { 2 } + x
E) f(x)=x22xf ^ { \prime } ( x ) = x ^ { 2 } - 2 x
Question
Differentiate the given function. y=7(6x)6y = \frac { 7 } { ( 6 x ) ^ { 6 } }

A) 252(6x)7\frac { 252 } { ( 6 x ) ^ { 7 } }
B) 42(6x)7- \frac { 42 } { ( 6 x ) ^ { 7 } }
C) 252(6x)7- \frac { 252 } { ( 6 x ) ^ { 7 } }
D) 42(6x)7\frac { 42 } { ( 6 x ) ^ { 7 } }
E) 42(6x)5- \frac { 42 } { ( 6 x ) ^ { 5 } }
Question
The graph shows the number of visitors V to a national park in hundreds of thousands during a one-year period, where t = 1 represents January. Estimate the rate of change of V over the interval [9,12][ 9,12 ] . Round your answer to the nearest hundred thousand visitors per year.  <strong>The graph shows the number of visitors V to a national park in hundreds of thousands during a one-year period, where t = 1 represents January. Estimate the rate of change of V over the interval  [ 9,12 ]  . Round your answer to the nearest hundred thousand visitors per year.  </strong> A)64.29 hundred thousand visitors per year B)90.00 hundred thousand visitors per year C)-450.00 hundred thousand visitors per year D)225.00 hundred thousand visitors per year E)450.00 hundred thousand visitors per year <div style=padding-top: 35px>

A)64.29 hundred thousand visitors per year
B)90.00 hundred thousand visitors per year
C)-450.00 hundred thousand visitors per year
D)225.00 hundred thousand visitors per year
E)450.00 hundred thousand visitors per year
Question
Find the derivative of the function h(x)=x5/3h ( x ) = x ^ { 5 / 3 } .

A) h(x)=53x8/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { 8 /3 }
B) h(x)=53x2/3h ^ { \prime } ( x ) = - \frac { 5 } { 3 } x ^ { 2 / 3 }
C) h(x)=53x2/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { 2 / 3 }
D) h(x)=53x8/3h ^ { \prime } ( x ) = - \frac { 5 } { 3 } x ^ { 8 / 3 }
E) h(x)=53x2/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { - 2 / 3 }
Question
Find the derivative of the function. h(x)=18x23+19x138x10+20x2h ( x ) = 18 x ^ { 23 } + 19 x ^ { 13 } - 8 x ^ { 10 } + 20 x - 2

A) 396x22+228x1272x9+20396 x ^ { 22 } + 228 x ^ { 12 } - 72 x ^ { 9 } + 20
B) 414x23+247x1380x10+20x414 x ^ { 23 } + 247 x ^ { 13 } - 80 x ^ { 10 } + 20 x
C) 18x22+19x128x9+2018 x ^ { 22 } + 19 x ^ { 12 } - 8 x ^ { 9 } + 20
D) 414x22+247x1280x9+20414 x ^ { 22 } + 247 x ^ { 12 } - 80 x ^ { 9 } + 20
E) 396x23+228x1372x10+20x396 x ^ { 23 } + 228 x ^ { 13 } - 72 x ^ { 10 } + 20 x
Question
The population P ( in thousands) of Japan from 1980 through 2010 can be modeled by P=15.56t2+802.1t+117,001P = - 15.56 t ^ { 2 } + 802.1 t + 117,001 where t is the year, with t =0 corresponding to 1980. Determine the population growth rate, dP/dtd P / d t .

A) dP/dt=31.12t+802.1d P / d t = - 31.12 t + 802.1
B) dP/dt=31.12t+802.1d P / d t = 31.12 t + 802.1
C) dP/dt=31.12t802.1d P / d t = - 31.12 t - 802.1
D) dP/dt=31.12t802.1d P / d t = 31.12 t - 802.1
E) dP/dt=31.12+802.1td P / d t = - 31.12 + 802.1 t
Question
Find the point(s), if any, at which the graph of f has a horizontal tangent line. f(x)=x2x1f ( x ) = \frac { x ^ { 2 } } { x - 1 }

A) (0,0),(2,4)( 0,0 ) , ( 2,4 )
B) (0,2),(0,4)( 0,2 ) , ( 0,4 )
C) (4,0),(2,0)( 4,0 ) , ( 2,0 )
D) (0,4),(2,0)( 0,4 ) , ( 2,0 )
E) (0,0),(4,2)( 0,0 ) , ( 4,2 )
Question
Differentiate the given function. y=6x6+8xy = \sqrt { 6 x ^ { 6 } + 8 x }

A) 12(36x5+8)1/2\frac { 1 } { 2 } \left( 36 x ^ { 5 } + 8 \right) ^ { - 1 / 2 }
B) 12(6x6+8x)1/2\frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 }
C) 12(36x6+8x)1/2(6x6+8)\frac { 1 } { 2 } \left( 36 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 } \left( 6 x ^ { 6 } + 8 \right)
D) 12(6x6+8x)1/2(36x5+8)\frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 } \left( 36 x ^ { 5 } + 8 \right)
E) 12(6x6+8x)3/2(36x5+8)- \frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 3 / 2 } \left( 36 x ^ { 5 } + 8 \right)
Question
Find dy/du,du/dx, and dy/dxd y / d u , d u / d x \text {, and } d y / d x of the functions y=u2,u=4x+7y = u ^ { 2 } , u = 4 x + 7 .

A) dy/du=2u,du/dx=4, and dy/dx=32x+56d y / d u = 2 u , d u / d x = 4 , \text { and } d y / d x = 32 x + 56
B) dy/du=2u,du/dx=2, and dy/dx=16x+49d y / d u = 2 u , d u / d x = 2 \text {, and } d y / d x = 16 x + 49
C) dy/du=4u,du/dx=4, and dy/dx=32x+56d y / d u = 4 u , d u / d x = 4 , \text { and } d y / d x = 32 x + 56
D) dy/du=4u,du/dx=2, and dy/dx=32x+56d y / d u = 4 u , d u / d x = 2 , \text { and } d y / d x = 32 x + 56
E) dy/du=2u,du/dx=4, and dy/dx=16x+49d y / d u = 2 u , d u / d x = 4 \text {, and } d y / d x = 16 x + 49
Question
The value V of a machine tt years after it is purchased is inversely proportional to the square root of t+5t + 5 . The initial value of the machine is $\$ 10,000. Find the rate of depreciation when t=3t = 3 . Round your answer to two decimal places.

A)-494.11 per year
B)-1767.77 per year
C)962.25 per year
D)447.21 per year
E)-988.21 per year
Question
Use the given information to find f(2)f ^ { \prime } ( 2 ) of the function f(x)=g(x)h(x)f ( x ) = g ( x ) h ( x ) . g(2)=3 and g(2)=2,h(2)=1 and h(2)=4g ( 2 ) = 3 \text { and } g ^ { \prime } ( 2 ) = - 2 , h ( 2 ) = - 1 \text { and } h ^ { \prime } ( 2 ) = 4

A) f(2)=14f ^ { \prime } ( 2 ) = 14
B) f(2)=11f ^ { \prime } ( 2 ) = - 11
C) f(2)=17f ^ { \prime } ( 2 ) = 17
D) f(2)=9f ^ { \prime } ( 2 ) = - 9
E) f(2)=12f ^ { \prime } ( 2 ) = 12
Question
Find the derivative of the given function. Simplify and express the answer using positive exponents only. c(x)=3xx9+7c ( x ) = 3 x \sqrt { x ^ { 9 } + 7 }  <strong>Find the derivative of the given function. Simplify and express the answer using positive exponents only.  c ( x ) = 3 x \sqrt { x ^ { 9 } + 7 }   </strong> A)  \frac { 3 \left( 11 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  B)  \frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  C)  \frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  D)  \frac { 3 \left( 11 x ^ { 9 } + 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  E)  \frac { 3 \left( 9 x ^ { 9 } + 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  <div style=padding-top: 35px>

A) 3(11x914)2(x9+7)1/2\frac { 3 \left( 11 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
B) 3(9x914)2(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
C) 3(9x914)(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
D) 3(11x9+14)2(x9+7)1/2\frac { 3 \left( 11 x ^ { 9 } + 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
E) 3(9x9+14)(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } + 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
Question
A population of bacteria is introduced into a culture. The number of bacteria P can be modeled by P=275(1+7t47+t2)P = 275 \left( 1 + \frac { 7 t } { 47 + t ^ { 2 } } \right) where t is the time (in hours). Find the rate of change of the population when t=5.00t = 5.00 .

A)87.50 units per dollar
B)1.17 units per dollar
C)8.17 units per dollar
D)8.91 units per dollar
E)12.50 units per dollar
Question
Find an equation of the tangent line to the graph of f at the given point. f(s)=(s5)(s23),f ( s ) = ( s - 5 ) \left( s ^ { 2 } - 3 \right), at (1,8)( 1,8 )

A) y=10s+18y = 10 s + 18
B) y=2s10y = 2 s - 10
C) y=10s2y = - 10 s - 2
D) y=10s+18y = - 10 s + 18
E) y=10+18sy = - 10 + 18 s
Question
Find the derivative of the function. g(x)=(x+2x2+9)5g ( x ) = \left( \frac { x + 2 } { x ^ { 2 } + 9 } \right) ^ { 5 }

A) g(x)=5(94x+x2)(2+x)(9+x2)((2+x)(9+x2))5g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x + x ^ { 2 } \right) } { ( 2 + x ) \left( 9 + x ^ { 2 } \right) } \left( \frac { ( 2 + x ) } { \left( 9 + x ^ { 2 } \right) } \right) ^ { 5 }
B) g(x)=5(9+4xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = \frac { 5 \left( 9 + 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
C) g(x)=5(94xx2)(2+x)6(9+x2)4g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 6 } } { \left( 9 + x ^ { 2 } \right) ^ { 4 } }
D) g(x)=5(94xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = - \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
E) g(x)=5(94xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
Question
Use the demand function x=250(15p7p+2)x = 250 \left( 1 - \frac { 5 p } { 7 p + 2 } \right) to find the rate of change in the demand x for the given price p=$2.00p = \$ 2.00 . Round your answer to two decimal places.

A)9.77 units per dollar
B)-1.95 units per dollar
C)1.95 units per dollar
D)3.47 units per dollar
E)-9.77 units per dollar
Question
Find the derivative of the function. f(t)=(1+8t)59f ( t ) = ( 1 + 8 t ) ^ { \frac { 5 } { 9 } }

A) f(t)=19(1+8)49f ^ { \prime } ( t ) = \frac { 1 } { 9 } ( 1 + 8 ) ^ { \frac { - 4 } { 9 } }
B) f(t)=405(1+8t)49f ^ { \prime } ( t ) = \frac { 40 } { 5 } ( 1 + 8 t ) ^ { \frac { -4 } { 9 } }
C) f(t)=409(1+8t)45f ^ { \prime } ( t ) = \frac { 40 } { 9 } ( 1 + 8 t ) ^ { \frac { -4 } { 5 } }
D) f(t)=89(1+8)49f ^ { \prime } ( t ) = \frac { 8 } { 9 } ( 1 + 8 ) ^ { \frac { - 4 } { 9 } }
E) f(t)=409(1+8t)49f ^ { \prime } ( t ) = \frac { 40 } { 9 } ( 1 + 8 t ) ^ { \frac { -4 } { 9 } }
Question
You deposit $\$ 5000 in an account with an annual interest rate of change r (in decimal form) compounded monthly. At the end of 5 years, the balance is A=5000(1+r12)60A = 5000 \left( 1 + \frac { r } { 12 } \right) ^ { 60 } . Find the rates of change of A with respect to r when r=0.08r = 0.08 .

A)7449.23
B)443,993.75
C)620.77
D)36999.48
E)36,754.45
Question
Find the derivative of the function. f(x)=x822xf ( x ) = x ^ { 8 } \sqrt { 2 - 2 x }

A) f(x)=x7(3234x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 - 34 x ) } { 2 \sqrt { 2 - 2 x } }
B) f(x)=x7(32+34x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 + 34 x ) } { 2 \sqrt { 2 - 2 x } }
C) f(x)=x7(234x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 2 - 34 x ) } { 2 \sqrt { 2 - 2 x } }
D) f(x)=x7(322x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 - 2 x ) } { 2 \sqrt { 2 - 2 x } }
E) f(x)=x7(2+2x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 2 + 2 x ) } { 2 \sqrt { 2 - 2 x } }
Question
A population of bacteria is introduced into a culture. The number of bacteria P can be modeled by P=500(1+4t50+t2)P = 500 \left( 1 + \frac { 4 t } { 50 + t ^ { 2 } } \right) where t is the time (in hours). Find the rate of change of the population when t = 2.

A) 31.55 bacteria/hr 31.55 \text { bacteria/hr }
B) 29.15 bacteria/hr 29.15 \text { bacteria/hr }
C) 33.65 bacteria/hr 33.65 \text { bacteria/hr }
D) 32.75 bacteria/hr 32.75 \text { bacteria/hr }
E) 30.25 bacteria/hr 30.25 \text { bacteria/hr }
Question
Find the derivative of the function. f(x)=x4(3+3x)3f ( x ) = x ^ { 4 } ( 3 + 3 x ) ^ { 3 }

A) f(x)=x2(3+3x)3(12+21x)f ^ { \prime } ( x ) = x ^ { 2 } ( 3 + 3 x ) ^ { 3 } ( 12 + 21 x )
B) f(x)=3x4(3+3x)2(12+21x)f ^ { \prime } ( x ) = 3 x ^ { 4 } ( 3 + 3 x ) ^ { 2 } ( 12 + 21 x )
C) f(x)=x3(3+3x)3(12+21x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 3 } ( 12 + 21 x )
D) f(x)=x3(3+3x)2(12+21x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 2 } ( 12 + 21 x )
E) f(x)=x3(3+3x)2(12+3x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 2 } ( 12 + 3 x )
Question
Find dydx\frac { d y } { d x } of y=uy = \sqrt { u } , u=9x2u = 9 - x ^ { 2 } .

A) x9x2\frac { x } { \sqrt { 9 - x ^ { 2 } } }
B) 129x2\frac { 1 } { 2 \sqrt { 9 - x ^ { 2 } } }
C) x9x2\frac { - x } { \sqrt { 9 - x ^ { 2 } } }
D) 129x2- \frac { 1 } { 2 \sqrt { 9 - x ^ { 2 } } }
E)none of these choices
Question
Find an equation of the tangent line to the graph of f at the given point. f(v)=(v5)(v25),f ( v ) = ( v - 5 ) \left( v ^ { 2 } - 5 \right), at (2,3)( 2,3 )

A) y=13v+29y = 13 v + 29
B) y=23v13y = 23 v - 13
C) y=13v23y = - 13 v - 23
D) y=13v+29y = - 13 v + 29
E) y=13+29vy = - 13 + 29 v
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/77
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Limits and Derivatives
1
Complete the table and use the result to estimate the limit. limx5x+5x2+2x15\lim _ { x \rightarrow - 5 } \frac { x + 5 } { x ^ { 2 } + 2 x - 15 } x5.15.015.0014.9994.994.9f(x)\begin{array}{lllllll}x&-5.1 & -5.01 & -5.001 & -4.999 & -4.99 & -4.9\\f(x)\end{array}

A)-0.125000
B)0.375000
C)0.250000
D)0.500000
E)-0.500000
-0.125000
2
Find the limit (if it exists): limΔx0(x+Δx)213(x+Δx)+13(x213x+13)Δx\lim _ { \Delta x \rightarrow 0 } \frac { ( x + \Delta x ) ^ { 2 } - 13 ( x + \Delta x ) + 13 - \left( x ^ { 2 } - 13 x + 13 \right) } { \Delta x }

A) 13x3132x2+13x\frac { 1 } { 3 } x ^ { 3 } - \frac { 13 } { 2 } x ^ { 2 } + 13 x
B) x313x2+13xx ^ { 3 } - 13 x ^ { 2 } + 13 x
C)0
D) 2x132 x - 13
E) x213x+13x ^ { 2 } - 13 x + 13
2x132 x - 13
3
Find limx61(x6)2\lim _ { x \rightarrow 6 ^ { - } } \frac { 1 } { ( x - 6 ) ^ { 2 } } .

A)6
B) - \infty
C)0
D)-6
E)inf
inf
4
Find limx41x+4\lim _ { x \rightarrow - 4 ^ { - } } \frac { 1 } { x + 4 } .

A)4
B)0
C) - \infty
D)-4
E)inf
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
5
Determine whether the given function is continuous. If it is not, identify where it is discontinuous. y=7x29x+3y = 7 x ^ { 2 } - 9 x + 3

A)discontinuous at x=4x = 4
B)discontinuous at x=0x = 0
C)discontinuous at x=4x = - 4
D)discontinuous at x=8x = 8
E)continuous everywhere
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
6
Suppose that limxcf(x)=9\lim _ { x \rightarrow c } f ( x ) = 9 and limxcg(x)=10\lim _ { x \rightarrow c } g ( x ) = 10 . Find the following limit: limxc[f(x)g(x)]\lim _ { x \rightarrow c } [ f ( x ) g ( x ) ]

A)9
B)19
C)-1
D)90
E)-10
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
7
Determine whether the given function is continuous. If it is not, identify where it is discontinuous and which condition fails to hold. You can verify your conclusions by graphing the function with a graphing utility, if one is available. y=8x7x2+36y = \frac { 8 x - 7 } { x ^ { 2 } + 36 }

A)discontinuous at x=36x = - 36
B)discontinuous at x=6x = 6
C)discontinuous at x=6x = - 6
D)discontinuous at x=36x = 36
E)continuous everywhere
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
8
Determine the following limit. (Hint: Use the graph of the function.) limx21x2\lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }  <strong>Determine the following limit. (Hint: Use the graph of the function.)  \lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }   </strong> A)0 B)does not exist C)2 D)-2 E)-4

A)0
B)does not exist
C)2
D)-2
E)-4
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
9
Let f(x)={x2+2,x11,x=1f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 2 , & x \neq 1 \\1 , & x = 1\end{array} \right. . Determine the following limit. (Hint: Use the graph of the function.) limx1f(x)\lim _ { x \rightarrow \mathbb { 1 } } f ( x )  <strong>Let  f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 2 , & x \neq 1 \\ 1 , & x = 1 \end{array} \right.  . Determine the following limit. (Hint: Use the graph of the function.)  \lim _ { x \rightarrow \mathbb { 1 } } f ( x )   </strong> A)3 B)1 C)2 D)4 E)does not exist.

A)3
B)1
C)2
D)4
E)does not exist.
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
10
Complete the table and use the result to estimate the limit. limx18x+102x1\lim _ { x \rightarrow 1 } \frac { \sqrt { - 8 x + 10 } - \sqrt { 2 } } { x - 1 } x0.90.990.9991.0011.011.1f(x)\begin{array}{lllllll}x & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1\\f(x)\end{array}

A)2.828427
B)-2.703427
C)-2.828427
D)2.66176
E)2.578427
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
11
Describe the interval (( s )) on which the function f(x)=x4x216f ( x ) = \frac { x - 4 } { x ^ { 2 } - 16 } is continuous.

A) (,4],(4,4]&(4,)( - \infty , - 4 ] , ( - 4,4 ] \& ( 4 , \infty )
B) (,4),(4,4)&(4,)( - \infty , 4 ) , ( 4,4 ) \& ( 4 , \infty )
C) (,4),(4,4)&(4,)( - \infty , - 4 ) , ( - 4,4 ) \& ( 4 , \infty )
D) (,4],(4,4)&(4,)( - \infty , - 4 ] , ( - 4,4 ) \& ( 4 , \infty )
E) (,4],[4,4]&[4,)( - \infty , - 4 ] , [ - 4,4 ] \& [ 4 , \infty )
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
12
Suppose that limxcf(x)=11\lim _ { x \rightarrow c } f ( x ) = 11 and limxcg(x)=15\lim _ { x \rightarrow c } g ( x ) = - 15 . Find the following limit: limxc[f(x)+g(x)]\lim _ { x \rightarrow c } [ f ( x ) + g ( x ) ]

A)-165
B)26
C)0
D)-4
E)-15
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
13
Consider a certificate of deposit that pays 10% (annual percentage rate) on an initial deposit of $1000. The balance after 10 years is A=1000(1+01x)10/xA = 1000 ( 1 + 0 \cdot 1 x ) ^ { 10 / x } . Estimate limx0+A\lim _ { x \rightarrow 0 ^ { + } } A , where xx is the length of the compounding period (in years). Round your answer to the nearest hundredth.

A)2718.28
B)367.88
C)1000.00
D)10,000.00
E)1100.00
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
14
Graph the function with a graphing utility and use it to predict the limit. Check your work either by using the table feature of the graphing utility or by finding the limit algebraically. limx8x34x221xx215x+56\lim _ { x \rightarrow 8 } \frac { x ^ { 3 } - 4 x ^ { 2 } - 21 x } { x ^ { 2 } - 15 x + 56 }

A) 1511\frac { 15 } { 11 }
B) 8888
C) 1115\frac { 11 } { 15 }
D)0
E)does not exist
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
15
Find the x-values (if any) at which the function f(x)=13x2+6x+5f ( x ) = - 13 x ^ { 2 } + 6 x + 5 is not continuous. Which of the discontinuities are removable?

A)continuous everywhere
B) x=5x = 5 , removable
C) x=313x = \frac { 3 } { 13 } , removable
D) x=313x = \frac { 3 } { 13 } , not removable
E)both B and C
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
16
A graph of y=f(x)y = f ( x ) is shown and a c-value is given. For this problem, use the graph to find limxcf(x)\lim _ { x \rightarrow c } f ( x ) . c=2c = - 2  <strong>A graph of  y = f ( x )  is shown and a c-value is given. For this problem, use the graph to find  \lim _ { x \rightarrow c } f ( x )  .  c = - 2   </strong> A)0 B)2 C)-6 D)-4 E)does not exist

A)0
B)2
C)-6
D)-4
E)does not exist
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
17
The cost (in dollars) of removing p%p\% of the pollutants from the water in a small lake is given by C=23,000p300p,0p<300C = \frac { 23,000 p } { 300 - p } , 0 \leq p < 300 . Evaluate limp300C\lim _ { p \rightarrow 300 ^ { - } } C .

A) \infty
B) 23,00023,000
C) 00
D) - \infty
E) 23,000- 23,000
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
18
Complete the table and use the result to estimate the limit. limx21x10+112x+2\lim _ { x \rightarrow - 2 } \frac { \frac { 1 } { x - 10 } + \frac { 1 } { 12 } } { x + 2 } x2.12.012.0011.9991.991.9f(x)\begin{array}{llllll}x&-2.1 & -2.01 & -2.001 & -1.999 & -1.99 & -1.9\\f(x)\end{array}

A)0.123056
B)0.103056
C)-0.136944
D)-0.006944
E)-0.116944
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
19
Use the graph of y=f(x)y = f ( x ) and the given c-value to find limxc+f(x)\lim _ { x \rightarrow c ^ { + } } f ( x ) . c=4.5c = - 4.5  <strong>Use the graph of  y = f ( x )  and the given c-value to find  \lim _ { x \rightarrow c ^ { + } } f ( x )  .  c = - 4.5   </strong> A)  - 6  B)-5 C)-8 D)3 E)does not exist

A) 6- 6
B)-5
C)-8
D)3
E)does not exist
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
20
Find the limit: limx11+x2x11\lim _ { x \rightarrow 11 ^ { + } } \frac { x - 2 } { x - 11 } .

A) - \infty
B) \infty
C)0
D)-1
E)1
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
21
Find the slope of the tangent line to the graph of the function at the given point. f(x)=5x27,(3,52)f ( x ) = - 5 x ^ { 2 } - 7 , \quad ( - 3 , - 52 )

A) 3030  <strong>Find the slope of the tangent line to the graph of the function at the given point.  f ( x ) = - 5 x ^ { 2 } - 7 , \quad ( - 3 , - 52 ) </strong> A)  30    B)  - 5  C)  7  D)  - 45  E)none of the above
B) 5- 5
C) 77
D) 45- 45
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
22
Sketch the graph of the function f(x)=x24x2f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 } and describe the interval(s) on which the function is continuous.

A) (,2]( - \infty , 2 ] and [2,)[ 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices
B) (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices
C) (,2]( - \infty , 2 ] and [2,)[ - 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices
D) (,2)( - \infty , 2 ) and (2,)( 2 , \infty )  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 }  and describe the interval(s) on which the function is continuous.</strong> A)  ( - \infty , 2 ]  and  [ 2 , \infty )    B)  ( - \infty , - 2 ]  and  [ 2 , \infty )    C)  ( - \infty , 2 ]  and  [ - 2 , \infty )    D)  ( - \infty , 2 )  and  ( 2 , \infty )    E)none of these choices
E)none of these choices
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
23
Find an equation of the line that is tangent to the graph of f and parallel to the given line. f(x)=5x2,20xy+3=0f ( x ) = 5 x ^ { 2 } , \quad 20 x - y + 3 = 0

A) y=20x20y = 20 x - 20  <strong>Find an equation of the line that is tangent to the graph of f and parallel to the given line.  f ( x ) = 5 x ^ { 2 } , \quad 20 x - y + 3 = 0 </strong> A)  y = 20 x - 20    B)  y = 20 x + 20  C)  y = - 20 x + 20  D)  y = - 20 x - 20  E)none of the above
B) y=20x+20y = 20 x + 20
C) y=20x+20y = - 20 x + 20
D) y=20x20y = - 20 x - 20
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
24
For the function given, find f(x)f ^ { \prime } ( x ) f(x)=x36x9f ( x ) = x ^ { 3 } - 6 x - 9

A) x26x ^ { 2 } - 6
B) 3x293 x ^ { 2 } - 9
C) 3x263 x ^ { 2 } - 6
D) 3x36x3 x ^ { 3 } - 6 x
E) x36x9x ^ { 3 } - 6 x - 9
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
25
Find the derivative of the following function using the limiting process. f(x)=2x+7f ( x ) = \frac { 2 } { x + 7 }

A) f(x)=2(x+7)2f ^ { \prime } ( x ) = \frac { 2 } { ( x + 7 ) ^ { 2 } }  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = \frac { 2 } { x + 7 } </strong> A)  f ^ { \prime } ( x ) = \frac { 2 } { ( x + 7 ) ^ { 2 } }    B)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) ^ { 2 } }  C)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) }  D)  f ^ { \prime } ( x ) = - \frac { 2 } { ( x + 7 ) ^ { 2 } }  E)none of the above
B) f(x)=2(x7)2f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) ^ { 2 } }
C) f(x)=2(x7)f ^ { \prime } ( x ) = - \frac { 2 } { ( x - 7 ) }
D) f(x)=2(x+7)2f ^ { \prime } ( x ) = - \frac { 2 } { ( x + 7 ) ^ { 2 } }
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
26
Find the x-values (if any) at which the function f(x)=x+6x2+10x+24f ( x ) = \frac { x + 6 } { x ^ { 2 } + 10 x + 24 } is not continuous. Which of the discontinuities are removable?

A)no points of discontinuity
B) x=6x = - 6 (not removable), x=4x = - 4 (removable)
C) x=6x = - 6 (removable), x=4x = - 4 (not removable)
D)no points of continuity
E) x=6x = - 6 (not removable), x=4x = - 4 (not removable)
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
27
Find the x-values (if any) at which f(x) is not continuous and identify whether they are removable or nonremovable. f(x)={2x+3,x<1x2,x1f ( x ) = \left\{ \begin{array} { l l } - 2 x + 3 , & x < 1 \\x ^ { 2 } , & x \geq 1\end{array} \right.

A)x = 1 is a removable discontinuity
B)x = 1 is a nonremovable discontinuity
C)x = -1 is a removable discontinuity
D)x = -1 is a nonremovable discontinuity
E)f(x)has no discontinuities
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
28
Find the derivative of the following function using the limiting process. f(x)=3x2+10xf ( x ) = - 3 x ^ { 2 } + 10 x

A) 3- 3  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = - 3 x ^ { 2 } + 10 x </strong> A)  - 3    B)  - 6 x + 10  C)  - 6 x - 10  D)  - 6 x  E)none of the above
B) 6x+10- 6 x + 10
C) 6x10- 6 x - 10
D) 6x- 6 x
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
29
Describe the interval(s) on which the function f(x)={x2100,10x+100,f ( x ) = \left\{ \begin{array} { l } x ^ { 2 } - 100 ,\\10 x + 100,\end{array} \right. x0x>0\begin{array} { l } x \leq 0 \\x > 0\end{array} is continuous.

A) (,0]( - \infty , 0 ] and (0,)( 0 , \infty )
B) (,0)( - \infty , 0 ) and [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 ) and (0,)( 0 , \infty )
D) (,)( - \infty , \infty )
E)none of these choices
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
30
Find the derivative of the function. f(x)=8x32x21f ( x ) = - 8 x ^ { 3 } - 2 x ^ { 2 } - 1

A) f(x)=24x24xf ^ { \prime } ( x ) = - 24 x ^ { 2 } - 4 x
B) f(x)=16x22xf ^ { \prime } ( x ) = - 16 x ^ { 2 } - 2 x
C) f(x)=16x2x2f ^ { \prime } ( x ) = - 16 x - 2 x ^ { 2 }
D) f(x)=24x24x1f ^ { \prime } ( x ) = - 24 x ^ { 2 } - 4 x - 1
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
31
Find an equation of the a line that is tangent to the graph of f and parallel to the given line. f(x)=8x3,216xy+5=0f ( x ) = 8 x ^ { 3 } , \quad 216 x - y + 5 = 0

A) y=216x+432y = - 216 x + 432  <strong>Find an equation of the a line that is tangent to the graph of f and parallel to the given line.  f ( x ) = 8 x ^ { 3 } , \quad 216 x - y + 5 = 0 </strong> A)  y = - 216 x + 432    B)  y = 216 x - 432  C)  y = - 216 x - 432  D)  y = 216 x + 432  E)both B and D
B) y=216x432y = 216 x - 432
C) y=216x432y = - 216 x - 432
D) y=216x+432y = 216 x + 432
E)both B and D
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
32
Find the derivative of the function. f(x)=x5f ( x ) = x ^ { 5 }

A) f(x)=5x5f ^ { \prime } ( x ) = 5 x ^ { 5 }
B) f(x)=5x4f ^ { \prime } ( x ) = 5 x ^ { 4 }
C) f(x)=4x4f ^ { \prime } ( x ) = 4 x ^ { 4 }
D) f(x)=4x6f ^ { \prime } ( x ) = 4 x ^ { 6 }
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
33
Use the limit definition to find the slope of the tangent line to the graph of f(x)=4x+25f ( x ) = \sqrt { 4 x + 25 } at the point (6,7)( 6,7 ) .

A) 27\frac { 2 } { 7 }
B) 27- \frac { 2 } { 7 }
C) 17\frac { 1 } { 7 }
D) 17- \frac { 1 } { 7 }
E) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
34
Find constants a and b such that the function f(x)={18,x3ax+b,3<x<918,x9f ( x ) = \left\{ \begin{array} { l l } 18 , & x \leq - 3 \\ax + b , & - 3 < x < 9 \\- 18 , & x \geq 9\end{array} \right. is continuous on the entire real line.

A)a = 3 , b = 0
B)a = 3 , b = 9
C)a = 3 , b = -9
D)a = -3 , b = -9
E)a = -3 , b = 9
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
35
A deposit of $6500 is made in an account that pays 6% compounded every 3 months. The amount AA in the account after tt years is A=6500(1+0.015)[123t]A = 6500 ( 1 + 0.015 ) ^ { \left[ \frac { 12 } { 3 } t \right] } , t 0\geq 0 . What are the points of discontinuity of graph of A=6500(1+0.015)[123t]A = 6500 ( 1 + 0.015 ) ^ { \left[ \frac { 12 } { 3 } t \right] } ? (Here, the brackets indicate the greatest integer function.)

A) 0,13,23,11,0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 1 } { 1 } , \ldots
B) 0,1,2,0,1,2 , \ldots
C) 3,6,9,3,6,9 , \ldots
D) 1,2,3,1,2,3 , \ldots
E) 14,12,34,\frac { 1 } { 4 } , \frac { 1 } { 2 } , \frac { 3 } { 4 } , \ldots
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
36
Find the slope of the tangent line to the graph of the function below at the given point. f(x)=2x+7,(0,7)f ( x ) = - 2 x + 7 , \quad ( 0,7 )

A) 2- 2  <strong>Find the slope of the tangent line to the graph of the function below at the given point.  f ( x ) = - 2 x + 7 , \quad ( 0,7 ) </strong> A)  - 2    B)  2  C)  - 7  D)  5  E)none of the above
B) 22
C) 7- 7
D) 55
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
37
Find the slope of the tangent line to the graph of the function at the given point. f(x)=4x2+4,(3,40)f ( x ) = 4 x ^ { 2 } + 4 , \quad ( 3,40 )

A) 2424  <strong>Find the slope of the tangent line to the graph of the function at the given point.  f ( x ) = 4 x ^ { 2 } + 4 , \quad ( 3,40 ) </strong> A)  24    B)  4  C)  - 4  D)  36  E)none of the above
B) 44
C) 4- 4
D) 3636
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
38
Identify a function f(x)f ( x ) that has the given characteristics and then sketch the function. f(0)=3;f(x)=4,<x<f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty

A) f(x)=4x+3f ( x ) = 4 x + 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4
B) f(x)=4x+3f ( x ) = - 4 x + 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4
C) f(x)=4x3f ( x ) = 4 x - 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4
D) f(x)=4x3f ( x ) = - 4 x - 3  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4
E) f(x)=3x+4f ( x ) = 3 x + 4  <strong>Identify a function  f ( x )  that has the given characteristics and then sketch the function.  f ( 0 ) = 3 ; f ^ { \prime } ( x ) = 4 , - \infty < x < \infty </strong> A)  f ( x ) = 4 x + 3    B)  f ( x ) = - 4 x + 3    C)  f ( x ) = 4 x - 3    D)  f ( x ) = - 4 x - 3    E)  f ( x ) = 3 x + 4
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
39
Find the x-values (if any) at which the function f(x)=xx2+16f ( x ) = \frac { x } { x ^ { 2 } + 16 } is not continuous. Which of the discontinuities are removable?

A)4 and -4, not removable
B)continuous everywhere
C)4 and -4, removable
D)discontinuous everywhere
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
40
Find the derivative of the following function using the limiting process. f(x)=3x4f ( x ) = \sqrt { 3 x - 4 }

A) f(x)=323x4f ^ { \prime } ( x ) = \frac { 3 } { 2 \sqrt { 3 x - 4 } }  <strong>Find the derivative of the following function using the limiting process.  f ( x ) = \sqrt { 3 x - 4 } </strong> A)  f ^ { \prime } ( x ) = \frac { 3 } { 2 \sqrt { 3 x - 4 } }    B)  f ^ { \prime } ( x ) = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }  C)  f ^ { \prime } ( x ) = \frac { 3 } { 2 } ( 3 x - 4 ) ^ { 1 / 2 }  D)  f ^ { \prime } ( x ) = - \frac { 3 } { \sqrt { 3 x - 4 } }  E)either B or D
B) f(x)=323x4f ^ { \prime } ( x ) = - \frac { 3 } { 2 \sqrt { 3 x - 4 } }
C) f(x)=32(3x4)1/2f ^ { \prime } ( x ) = \frac { 3 } { 2 } ( 3 x - 4 ) ^ { 1 / 2 }
D) f(x)=33x4f ^ { \prime } ( x ) = - \frac { 3 } { \sqrt { 3 x - 4 } }
E)either B or D
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
41
Find the derivative of the function f(x)=x2x20x+4f ( x ) = \frac { x ^ { 2 } - x - 20 } { x + 4 } . State which differentiation rule(s) you used to find the derivative.

A)1, Product Rule.
B)1, Quotient Rule
C)5, Product Rule.
D)5, Quotient Rule
E)x+3, Product Rule.
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
42
Find the derivative of the function. f(x)=1x4f ( x ) = \frac { 1 } { x ^ { 4 } }

A) f(x)=3x5f ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 5 } }
B) f(x)=4x3f ^ { \prime } ( x ) = - \frac { 4 } { x ^ { 3 } }
C) f(x)=4x5f ^ { \prime } ( x ) = - \frac { 4 } { x ^ { 5 } }
D) f(x)=5x5f ^ { \prime } ( x ) = - \frac { 5 } { x ^ { 5 } }
E)none of the above
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
43
Find the marginal cost for producing x units. (The cost is measured in dollars.) C=205,000+9800xC = 205,000 + 9800 x

A) $9800\$ 9800
B) $9850\$ 9850
C) $8800\$ 8800
D) $8850\$ 8850
E) $9750\$ 9750
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
44
Differentiate the given function. y=54x4y = \frac { 5 } { 4 x ^ { 4 } }

A) 20x5- \frac { 20 } { x ^ { 5 } }
B) 5x4- \frac { 5 } { x ^ { 4 } }
C) 20x4- \frac { 20 } { x ^ { 4 } }
D) 5x5- \frac { 5 } { x ^ { 5 } }
E) 4x5- \frac { 4 } { x ^ { 5 } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
45
The profit (in dollars) from selling x units of calculus textbooks is given by p=0.05x2+20x3000p = - 0.05 x ^ { 2 } + 20 x - 3000 . Find the additional profit when the sales increase from 149 to 150 units. Round your answer to two decimal places.

A)$5.05
B)$20.00
C)$5.15
D)$10.20
E)$10.00
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
46
The profit (in dollars) from selling x units of calculus textbooks is given by p=0.05x2+20x1000p = - 0.05 x ^ { 2 } + 20 x - 1000 . Find the marginal profit when x=149x = 149 . Round your answer to two decimal places.

A)$34.90
B)$869.95
C)$5.10
D)$20.00
E)$864.80
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
47
When the price of a glass of lemonade at a lemonade stand was $1.75, 400 glasses were sold. When the price was lowered to $1.50, 500 glasses were sold. Assume that the demand function is linear and that the marginal and fixed costs are $0.10 and $ 25, respectively. Find the marginal profit when 300 glasses of lemonade are sold and when 700 glasses of lemonade are sold.

A) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = 1.15 , P ^ { \prime } ( 700 ) = - 0.85
B) P(300)=0.85,P(700)=1.15P ^ { \prime } ( 300 ) = - 0.85 , P ^ { \prime } ( 700 ) = 1.15
C) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = 1.15 , P ^ { \prime } ( 700 ) = 0.85
D) P(300)=0.85,P(700)=1.15P ^ { \prime } ( 300 ) = 0.85 , P ^ { \prime } ( 700 ) = - 1.15
E) P(300)=1.15,P(700)=0.85P ^ { \prime } ( 300 ) = - 1.15 , P ^ { \prime } ( 700 ) = - 0.85
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
48
Find the derivative of the function s(t)=7x1+4s ( t ) = 7 x ^ { - 1 } + 4 .

A) s(t)=7x2s ^ { \prime } ( t ) = \frac { 7 } { x ^ { 2 } }
B) s(t)=7x2s ^ { \prime } ( t ) = - \frac { 7 } { x ^ { 2 } }
C) s(t)=7x2+4s ^ { \prime } ( t ) = - \frac { 7 } { x ^ { 2 } } + 4
D) s(t)=7x2+4s ^ { \prime } ( t ) = \frac { 7 } { x ^ { 2 } } + 4
E) s(t)=7x2s ^ { \prime } ( t ) = 7 x ^ { - 2 }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
49
Determine the point(s), (if any), at which the graph of the function has a horizontal tangent. y(x)=x4108x+1y ( x ) = x ^ { 4 } - 108 x + 1

A) 00
B) 00 and 33
C) 00 and 3- 3
D) 33
E)There are no points at which the graph has a horizontal tangent.
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
50
Find the marginal revenue for producing x units. (The revenue is measured in dollars.) R=50x0.5x2R = 50 x - 0.5 x ^ { 2 }

A) 50x dollars 50 - x \text { dollars }
B) 50+x dollars 50 + x \text { dollars }
C) 50 dollars 50 \text { dollars }
D) 500.5x dollars 50 - 0.5 x \text { dollars }
E) 50+0.5x dollars 50 + 0.5 x \text { dollars }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
51
When the price of a glass of lemonade at a lemonade stand was $1.75, 400 glasses were sold. When the price was lowered to $1.50, 500 glasses were sold. Assume that the demand function is linear and that the marginal and fixed costs are $0.10 and $ 25, respectively. Find the profit P as a function of x, the number of glasses of lemonade sold.

A) P=0.0025x2+2.65x25P = - 0.0025 x ^ { 2 } + 2.65 x - 25
B) P=0.0025x2+2.65x25P = 0.0025 x ^ { 2 } + 2.65 x - 25
C) P=0.0025x2+2.65x+25P = - 0.0025 x ^ { 2 } + 2.65 x + 25
D) P=0.0025x22.65x25P = 0.0025 x ^ { 2 } - 2.65 x - 25
E) P=0.0025x2+2.65x+25P = - 0.0025 x ^ { 2 } + 2.65 x + 25 .
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
52
Find the marginal profit for producing x units. (The profit is measured in dollars.) P=2x2+72x145P = - 2 x ^ { 2 } + 72 x - 145

A) 4x+72 dollars - 4 x + 72 \text { dollars }
B) 4x+72 dollars 4 x + 72 \text { dollars }
C) 4x72 dollars - 4 x - 72 \text { dollars }
D) 4x72 dollars 4 x - 72 \text { dollars }
E) 4+72x dollars - 4 + 72 x \text { dollars }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
53
The cost C (in dollars) of producing x units of a product is given by C=3.6x+500C = 3.6 \sqrt { x } + 500 . Find the additional cost when the production increases from 9 t o10.

A) $0.58\$ 0.58
B) $0.36\$ 0.36
C) $0.62\$ 0.62
D) $0.12\$ 0.12
E) $0.64\$ 0.64
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
54
Use the product Rule to find the derivative of the function f(x)=x(x2+3)f ( x ) = x \left( x ^ { 2 } + 3 \right) .

A) f(x)=3x2+3f ^ { \prime } ( x ) = 3 x ^ { 2 } + 3
B) f(x)=3x2+1f ^ { \prime } ( x ) = 3 x ^ { 2 } + 1
C) f(x)=x2+3f ^ { \prime } ( x ) = x ^ { 2 } + 3
D) f(x)=3x23f ^ { \prime } ( x ) = 3 x ^ { 2 } - 3
E) f(x)=3x21f ^ { \prime } ( x ) = 3 x ^ { 2 } - 1
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
55
Find the derivative of the function f(x)=x3+6x3f ( x ) = \frac { x ^ { 3 } + 6 x } { 3 } .

A) f(x)=x2+2f ^ { \prime } ( x ) = x ^ { 2 } + 2
B) f(x)=x2+6f ^ { \prime } ( x ) = x ^ { 2 } + 6
C) f(x)=x2+2xf ^ { \prime } ( x ) = x ^ { 2 } + 2 x
D) f(x)=x2+xf ^ { \prime } ( x ) = x ^ { 2 } + x
E) f(x)=x22xf ^ { \prime } ( x ) = x ^ { 2 } - 2 x
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
56
Differentiate the given function. y=7(6x)6y = \frac { 7 } { ( 6 x ) ^ { 6 } }

A) 252(6x)7\frac { 252 } { ( 6 x ) ^ { 7 } }
B) 42(6x)7- \frac { 42 } { ( 6 x ) ^ { 7 } }
C) 252(6x)7- \frac { 252 } { ( 6 x ) ^ { 7 } }
D) 42(6x)7\frac { 42 } { ( 6 x ) ^ { 7 } }
E) 42(6x)5- \frac { 42 } { ( 6 x ) ^ { 5 } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
57
The graph shows the number of visitors V to a national park in hundreds of thousands during a one-year period, where t = 1 represents January. Estimate the rate of change of V over the interval [9,12][ 9,12 ] . Round your answer to the nearest hundred thousand visitors per year.  <strong>The graph shows the number of visitors V to a national park in hundreds of thousands during a one-year period, where t = 1 represents January. Estimate the rate of change of V over the interval  [ 9,12 ]  . Round your answer to the nearest hundred thousand visitors per year.  </strong> A)64.29 hundred thousand visitors per year B)90.00 hundred thousand visitors per year C)-450.00 hundred thousand visitors per year D)225.00 hundred thousand visitors per year E)450.00 hundred thousand visitors per year

A)64.29 hundred thousand visitors per year
B)90.00 hundred thousand visitors per year
C)-450.00 hundred thousand visitors per year
D)225.00 hundred thousand visitors per year
E)450.00 hundred thousand visitors per year
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
58
Find the derivative of the function h(x)=x5/3h ( x ) = x ^ { 5 / 3 } .

A) h(x)=53x8/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { 8 /3 }
B) h(x)=53x2/3h ^ { \prime } ( x ) = - \frac { 5 } { 3 } x ^ { 2 / 3 }
C) h(x)=53x2/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { 2 / 3 }
D) h(x)=53x8/3h ^ { \prime } ( x ) = - \frac { 5 } { 3 } x ^ { 8 / 3 }
E) h(x)=53x2/3h ^ { \prime } ( x ) = \frac { 5 } { 3 } x ^ { - 2 / 3 }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
59
Find the derivative of the function. h(x)=18x23+19x138x10+20x2h ( x ) = 18 x ^ { 23 } + 19 x ^ { 13 } - 8 x ^ { 10 } + 20 x - 2

A) 396x22+228x1272x9+20396 x ^ { 22 } + 228 x ^ { 12 } - 72 x ^ { 9 } + 20
B) 414x23+247x1380x10+20x414 x ^ { 23 } + 247 x ^ { 13 } - 80 x ^ { 10 } + 20 x
C) 18x22+19x128x9+2018 x ^ { 22 } + 19 x ^ { 12 } - 8 x ^ { 9 } + 20
D) 414x22+247x1280x9+20414 x ^ { 22 } + 247 x ^ { 12 } - 80 x ^ { 9 } + 20
E) 396x23+228x1372x10+20x396 x ^ { 23 } + 228 x ^ { 13 } - 72 x ^ { 10 } + 20 x
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
60
The population P ( in thousands) of Japan from 1980 through 2010 can be modeled by P=15.56t2+802.1t+117,001P = - 15.56 t ^ { 2 } + 802.1 t + 117,001 where t is the year, with t =0 corresponding to 1980. Determine the population growth rate, dP/dtd P / d t .

A) dP/dt=31.12t+802.1d P / d t = - 31.12 t + 802.1
B) dP/dt=31.12t+802.1d P / d t = 31.12 t + 802.1
C) dP/dt=31.12t802.1d P / d t = - 31.12 t - 802.1
D) dP/dt=31.12t802.1d P / d t = 31.12 t - 802.1
E) dP/dt=31.12+802.1td P / d t = - 31.12 + 802.1 t
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
61
Find the point(s), if any, at which the graph of f has a horizontal tangent line. f(x)=x2x1f ( x ) = \frac { x ^ { 2 } } { x - 1 }

A) (0,0),(2,4)( 0,0 ) , ( 2,4 )
B) (0,2),(0,4)( 0,2 ) , ( 0,4 )
C) (4,0),(2,0)( 4,0 ) , ( 2,0 )
D) (0,4),(2,0)( 0,4 ) , ( 2,0 )
E) (0,0),(4,2)( 0,0 ) , ( 4,2 )
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
62
Differentiate the given function. y=6x6+8xy = \sqrt { 6 x ^ { 6 } + 8 x }

A) 12(36x5+8)1/2\frac { 1 } { 2 } \left( 36 x ^ { 5 } + 8 \right) ^ { - 1 / 2 }
B) 12(6x6+8x)1/2\frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 }
C) 12(36x6+8x)1/2(6x6+8)\frac { 1 } { 2 } \left( 36 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 } \left( 6 x ^ { 6 } + 8 \right)
D) 12(6x6+8x)1/2(36x5+8)\frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 1 / 2 } \left( 36 x ^ { 5 } + 8 \right)
E) 12(6x6+8x)3/2(36x5+8)- \frac { 1 } { 2 } \left( 6 x ^ { 6 } + 8 x \right) ^ { - 3 / 2 } \left( 36 x ^ { 5 } + 8 \right)
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
63
Find dy/du,du/dx, and dy/dxd y / d u , d u / d x \text {, and } d y / d x of the functions y=u2,u=4x+7y = u ^ { 2 } , u = 4 x + 7 .

A) dy/du=2u,du/dx=4, and dy/dx=32x+56d y / d u = 2 u , d u / d x = 4 , \text { and } d y / d x = 32 x + 56
B) dy/du=2u,du/dx=2, and dy/dx=16x+49d y / d u = 2 u , d u / d x = 2 \text {, and } d y / d x = 16 x + 49
C) dy/du=4u,du/dx=4, and dy/dx=32x+56d y / d u = 4 u , d u / d x = 4 , \text { and } d y / d x = 32 x + 56
D) dy/du=4u,du/dx=2, and dy/dx=32x+56d y / d u = 4 u , d u / d x = 2 , \text { and } d y / d x = 32 x + 56
E) dy/du=2u,du/dx=4, and dy/dx=16x+49d y / d u = 2 u , d u / d x = 4 \text {, and } d y / d x = 16 x + 49
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
64
The value V of a machine tt years after it is purchased is inversely proportional to the square root of t+5t + 5 . The initial value of the machine is $\$ 10,000. Find the rate of depreciation when t=3t = 3 . Round your answer to two decimal places.

A)-494.11 per year
B)-1767.77 per year
C)962.25 per year
D)447.21 per year
E)-988.21 per year
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
65
Use the given information to find f(2)f ^ { \prime } ( 2 ) of the function f(x)=g(x)h(x)f ( x ) = g ( x ) h ( x ) . g(2)=3 and g(2)=2,h(2)=1 and h(2)=4g ( 2 ) = 3 \text { and } g ^ { \prime } ( 2 ) = - 2 , h ( 2 ) = - 1 \text { and } h ^ { \prime } ( 2 ) = 4

A) f(2)=14f ^ { \prime } ( 2 ) = 14
B) f(2)=11f ^ { \prime } ( 2 ) = - 11
C) f(2)=17f ^ { \prime } ( 2 ) = 17
D) f(2)=9f ^ { \prime } ( 2 ) = - 9
E) f(2)=12f ^ { \prime } ( 2 ) = 12
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
66
Find the derivative of the given function. Simplify and express the answer using positive exponents only. c(x)=3xx9+7c ( x ) = 3 x \sqrt { x ^ { 9 } + 7 }  <strong>Find the derivative of the given function. Simplify and express the answer using positive exponents only.  c ( x ) = 3 x \sqrt { x ^ { 9 } + 7 }   </strong> A)  \frac { 3 \left( 11 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  B)  \frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  C)  \frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  D)  \frac { 3 \left( 11 x ^ { 9 } + 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }  E)  \frac { 3 \left( 9 x ^ { 9 } + 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }

A) 3(11x914)2(x9+7)1/2\frac { 3 \left( 11 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
B) 3(9x914)2(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
C) 3(9x914)(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } - 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
D) 3(11x9+14)2(x9+7)1/2\frac { 3 \left( 11 x ^ { 9 } + 14 \right) } { 2 \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
E) 3(9x9+14)(x9+7)1/2\frac { 3 \left( 9 x ^ { 9 } + 14 \right) } { \left( x ^ { 9 } + 7 \right) ^ { 1 / 2 } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
67
A population of bacteria is introduced into a culture. The number of bacteria P can be modeled by P=275(1+7t47+t2)P = 275 \left( 1 + \frac { 7 t } { 47 + t ^ { 2 } } \right) where t is the time (in hours). Find the rate of change of the population when t=5.00t = 5.00 .

A)87.50 units per dollar
B)1.17 units per dollar
C)8.17 units per dollar
D)8.91 units per dollar
E)12.50 units per dollar
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
68
Find an equation of the tangent line to the graph of f at the given point. f(s)=(s5)(s23),f ( s ) = ( s - 5 ) \left( s ^ { 2 } - 3 \right), at (1,8)( 1,8 )

A) y=10s+18y = 10 s + 18
B) y=2s10y = 2 s - 10
C) y=10s2y = - 10 s - 2
D) y=10s+18y = - 10 s + 18
E) y=10+18sy = - 10 + 18 s
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
69
Find the derivative of the function. g(x)=(x+2x2+9)5g ( x ) = \left( \frac { x + 2 } { x ^ { 2 } + 9 } \right) ^ { 5 }

A) g(x)=5(94x+x2)(2+x)(9+x2)((2+x)(9+x2))5g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x + x ^ { 2 } \right) } { ( 2 + x ) \left( 9 + x ^ { 2 } \right) } \left( \frac { ( 2 + x ) } { \left( 9 + x ^ { 2 } \right) } \right) ^ { 5 }
B) g(x)=5(9+4xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = \frac { 5 \left( 9 + 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
C) g(x)=5(94xx2)(2+x)6(9+x2)4g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 6 } } { \left( 9 + x ^ { 2 } \right) ^ { 4 } }
D) g(x)=5(94xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = - \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
E) g(x)=5(94xx2)(2+x)4(9+x2)6g ^ { \prime } ( x ) = \frac { 5 \left( 9 - 4 x - x ^ { 2 } \right) ( 2 + x ) ^ { 4 } } { \left( 9 + x ^ { 2 } \right) ^ { 6 } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
70
Use the demand function x=250(15p7p+2)x = 250 \left( 1 - \frac { 5 p } { 7 p + 2 } \right) to find the rate of change in the demand x for the given price p=$2.00p = \$ 2.00 . Round your answer to two decimal places.

A)9.77 units per dollar
B)-1.95 units per dollar
C)1.95 units per dollar
D)3.47 units per dollar
E)-9.77 units per dollar
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
71
Find the derivative of the function. f(t)=(1+8t)59f ( t ) = ( 1 + 8 t ) ^ { \frac { 5 } { 9 } }

A) f(t)=19(1+8)49f ^ { \prime } ( t ) = \frac { 1 } { 9 } ( 1 + 8 ) ^ { \frac { - 4 } { 9 } }
B) f(t)=405(1+8t)49f ^ { \prime } ( t ) = \frac { 40 } { 5 } ( 1 + 8 t ) ^ { \frac { -4 } { 9 } }
C) f(t)=409(1+8t)45f ^ { \prime } ( t ) = \frac { 40 } { 9 } ( 1 + 8 t ) ^ { \frac { -4 } { 5 } }
D) f(t)=89(1+8)49f ^ { \prime } ( t ) = \frac { 8 } { 9 } ( 1 + 8 ) ^ { \frac { - 4 } { 9 } }
E) f(t)=409(1+8t)49f ^ { \prime } ( t ) = \frac { 40 } { 9 } ( 1 + 8 t ) ^ { \frac { -4 } { 9 } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
72
You deposit $\$ 5000 in an account with an annual interest rate of change r (in decimal form) compounded monthly. At the end of 5 years, the balance is A=5000(1+r12)60A = 5000 \left( 1 + \frac { r } { 12 } \right) ^ { 60 } . Find the rates of change of A with respect to r when r=0.08r = 0.08 .

A)7449.23
B)443,993.75
C)620.77
D)36999.48
E)36,754.45
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
73
Find the derivative of the function. f(x)=x822xf ( x ) = x ^ { 8 } \sqrt { 2 - 2 x }

A) f(x)=x7(3234x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 - 34 x ) } { 2 \sqrt { 2 - 2 x } }
B) f(x)=x7(32+34x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 + 34 x ) } { 2 \sqrt { 2 - 2 x } }
C) f(x)=x7(234x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 2 - 34 x ) } { 2 \sqrt { 2 - 2 x } }
D) f(x)=x7(322x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 32 - 2 x ) } { 2 \sqrt { 2 - 2 x } }
E) f(x)=x7(2+2x)222xf ^ { \prime } ( x ) = \frac { x ^ { 7 } ( 2 + 2 x ) } { 2 \sqrt { 2 - 2 x } }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
74
A population of bacteria is introduced into a culture. The number of bacteria P can be modeled by P=500(1+4t50+t2)P = 500 \left( 1 + \frac { 4 t } { 50 + t ^ { 2 } } \right) where t is the time (in hours). Find the rate of change of the population when t = 2.

A) 31.55 bacteria/hr 31.55 \text { bacteria/hr }
B) 29.15 bacteria/hr 29.15 \text { bacteria/hr }
C) 33.65 bacteria/hr 33.65 \text { bacteria/hr }
D) 32.75 bacteria/hr 32.75 \text { bacteria/hr }
E) 30.25 bacteria/hr 30.25 \text { bacteria/hr }
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
75
Find the derivative of the function. f(x)=x4(3+3x)3f ( x ) = x ^ { 4 } ( 3 + 3 x ) ^ { 3 }

A) f(x)=x2(3+3x)3(12+21x)f ^ { \prime } ( x ) = x ^ { 2 } ( 3 + 3 x ) ^ { 3 } ( 12 + 21 x )
B) f(x)=3x4(3+3x)2(12+21x)f ^ { \prime } ( x ) = 3 x ^ { 4 } ( 3 + 3 x ) ^ { 2 } ( 12 + 21 x )
C) f(x)=x3(3+3x)3(12+21x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 3 } ( 12 + 21 x )
D) f(x)=x3(3+3x)2(12+21x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 2 } ( 12 + 21 x )
E) f(x)=x3(3+3x)2(12+3x)f ^ { \prime } ( x ) = x ^ { 3 } ( 3 + 3 x ) ^ { 2 } ( 12 + 3 x )
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
76
Find dydx\frac { d y } { d x } of y=uy = \sqrt { u } , u=9x2u = 9 - x ^ { 2 } .

A) x9x2\frac { x } { \sqrt { 9 - x ^ { 2 } } }
B) 129x2\frac { 1 } { 2 \sqrt { 9 - x ^ { 2 } } }
C) x9x2\frac { - x } { \sqrt { 9 - x ^ { 2 } } }
D) 129x2- \frac { 1 } { 2 \sqrt { 9 - x ^ { 2 } } }
E)none of these choices
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
77
Find an equation of the tangent line to the graph of f at the given point. f(v)=(v5)(v25),f ( v ) = ( v - 5 ) \left( v ^ { 2 } - 5 \right), at (2,3)( 2,3 )

A) y=13v+29y = 13 v + 29
B) y=23v13y = 23 v - 13
C) y=13v23y = - 13 v - 23
D) y=13v+29y = - 13 v + 29
E) y=13+29vy = - 13 + 29 v
Unlock Deck
Unlock for access to all 77 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 77 flashcards in this deck.