Deck 5: Exponents and Radicals

Full screen (f)
exit full mode
Question
Simplify the numerical expression. 15(6)43(5)3+7(4)+1215 ( - 6 ) ^ { 4 } - 3 ( - 5 ) ^ { 3 } + 7 ( - 4 ) + 12

A)19,799
B)6,593
C)-16
D)-331
E)65,613,359
Use Space or
up arrow
down arrow
to flip the card.
Question
Simplify the expression. Express the final result without using zero or negative integers as exponents. a4a5a2a ^ { 4 } \cdot a ^ { - 5 } \cdot a ^ { - 2 }

A) a4a7\frac { a ^ { 4 } } { a ^ { 7 } }
B) 1a3\frac { 1 } { a ^ { 3 } }
C) 1a4\frac { 1 } { a ^ { 4 } }
D) aa
E) a4a10\frac { a ^ { 4 } } { a ^ { 10 } }
Question
Find a rational approximation, to the nearest tenth, for the radical expression. 25+552 \sqrt { 5 } + 5 \sqrt { 5 }

A) 13.813.8
B) 19.219.2
C) 16.716.7
D) 16.816.8
E) 15.715.7
Question
Simplify the expression. (7x8)2\left( 7 x ^ { 8 } \right) ^ { 2 }

A) 7x167 x ^ { 16 }
B) 7x87 x ^ { 8 }
C) 49x1749 x ^ { 17 }
D) 49x1649 x ^ { 16 }
E) 49x1549 x ^ { 15 }
Question
Simplify the numerical expression. 103- 10 ^ { - 3 }

A) 1100\frac { 1 } { 100 }
B) 1,000- 1,000
C) 31,000- \frac { 3 } { 1,000 }
D) 11,000\frac { 1 } { 1,000 }
E) 11,000- \frac { 1 } { 1,000 }
Question
Use a calculator to find a rational approximation of the square root. Express your answer to the nearest hundredth. 27\sqrt { 27 }

A) 2.602.60
B) 5.405.40
C) 5.205.20
D) 5.105.10
E) 10.3910.39
Question
Find the indicated product. Express the final result using positive integral exponents only. (2xy4)(4x4y7)\left( 2 x y ^ { - 4 } \right) \left( 4 x ^ { - 4 } y ^ { 7 } \right)

A) 8y3x3\frac { 8 y ^ { 3 } } { x ^ { 3 } }
B) 8x3y38 x ^ { - 3 } y ^ { 3 }
C) 8x3y38 x ^ { 3 } y ^ { 3 }
D) x38y3\frac { x ^ { 3 } } { 8 y ^ { 3 } }
E) y78xy8\frac { y ^ { 7 } } { 8 x y ^ { 8 } }
Question
Write the quotient as the quotient of two radicals and simplify. 169100\sqrt { \frac { 169 } { 100 } }

A) 710\frac { 7 } { 10 }
B) 107\frac { 10 } { 7 }
C) 1310\frac { 13 } { 10 }
D) 1013\frac { 10 } { 13 }
E) 16910\frac { 169 } { 10 }
Question
Express the following as a single fraction involving positive exponents only. 4x35x74 x ^ { - 3 } - 5 x ^ { - 7 }

A) 1x10- \frac { 1 } { x ^ { 10 } }
B) 4x75x34 x ^ { 7 } - 5 x ^ { 3 }
C) 4x45x7\frac { 4 x ^ { 4 } - 5 } { x ^ { 7 } }
D) 4x45x6\frac { 4 x ^ { 4 } - 5 } { x ^ { 6 } }
E) 14x75x3\frac { 1 } { 4 x ^ { 7 } - 5 x ^ { 3 } }
Question
Simplify the numerical expression. Simplify the numerical expression.  <div style=padding-top: 35px>
Question
Find the indicated quotient. Express the final result using positive integral exponents only. (63x2y29xy7)2\left( \frac { 63 x ^ { - 2 } y ^ { - 2 } } { 9 x y ^ { 7 } } \right) ^ { - 2 }

A) 149x16y18\frac { 1 } { 49 x ^ { 16 } y ^ { 18 } }
B) 49x4y549 x ^ { 4 } y ^ { 5 }
C) 49x16y1049 x ^ { 16 } y ^ { 10 }
D) x16y1849\frac { x ^ { 16 } y ^ { 18 } } { 49 }
E) 49x16y18\frac { 49 } { x ^ { 16 } y ^ { 18 } }
Question
Find a rational approximation, to the nearest tenth, for the radical expression. 7383+10373937 \sqrt { 3 } - 8 \sqrt { 3 } + 10 \sqrt { 3 } - 7 \sqrt { 3 } - 9 \sqrt { 3 }

A) 8.8- 8.8
B) 11.4- 11.4
C) 13.1- 13.1
D) 11.3- 11.3
E) 12.1- 12.1
Question
Simplify the radical. 32\sqrt { 32 }

A) 434 \sqrt { 3 }
B) 535 \sqrt { 3 }
C) 1616
D) 424 \sqrt { 2 }
E) 525 \sqrt { 2 }
Question
Find the indicated product. Express the final result using positive integral exponents only. 3xy25x3y43 x y ^ { - 2 } 5 x ^ { - 3 } y ^ { 4 }

A) y415xy5\frac { y ^ { 4 } } { 15 x y ^ { 5 } }
B) 15x2y215 x ^ { - 2 } y ^ { 2 }
C) x215y2\frac { x ^ { 2 } } { 15 y ^ { 2 } }
D) 15x2y215 x ^ { 2 } y ^ { 2 }
E) 15y2x2\frac { 15 y ^ { 2 } } { x ^ { 2 } }
Question
Change the radical to simplest radical form. 6122121- \frac { 6 \sqrt { 12 } } { 21 \sqrt { 21 } }

A) 2149- \frac { \sqrt { 21 } } { 49 }
B) 212112\frac { 21 } { 21 } \sqrt { 12 }
C) 474 \sqrt { 7 }
D) 4497- \frac { 4 } { 49 } \sqrt { 7 }
E) 2747- \frac { 2 } { 7 } \frac { \sqrt { 4 } } { \sqrt { 7 } }
Question
Simplify the numerical expression. (2332)1\left( 2 ^ { 3 } 3 ^ { - 2 } \right) ^ { - 1 }

A) 98\frac { 9 } { 8 }
B) 89\frac { 8 } { 9 }
C) 16\frac { 1 } { 6 }
D) 13\frac { 1 } { 3 }
E) 32\frac { 3 } { 2 }
Question
Simplify the expression. 200+700175\sqrt { 200 } + \sqrt { 700 } - \sqrt { 175 }

A) 1025710 \sqrt { 2 } - 5 \sqrt { 7 }
B) 102+5710 \sqrt { 2 } + 5 \sqrt { 7 }
C) 22+572 \sqrt { 2 } + 5 \sqrt { 7 }
D) 52+275 \sqrt { 2 } + 2 \sqrt { 7 }
E) 22572 \sqrt { 2 } - 5 \sqrt { 7 }
Question
Simplify the expression. Express final result without using zero or negative integers as exponents. (x1y4)3\left( \frac { x ^ { - 1 } } { y ^ { - 4 } } \right) ^ { - 3 }

A) x3y12\frac { x ^ { 3 } } { y ^ { 12 } }
B) y7x4\frac { y ^ { 7 } } { x ^ { 4 } }
C) x4y12\frac { x ^ { 4 } } { y ^ { 12 } }
D) y12x3\frac { y ^ { 12 } } { x ^ { 3 } }
E) x4y7\frac { x ^ { 4 } } { y ^ { 7 } }
Question
Express the following as a single fraction involving positive exponents only. 4x35x7+x- 4 x ^ { - 3 } - 5 x ^ { - 7 } + x

A) x64x45x7\frac { x ^ { 6 } - 4 x ^ { 4 } - 5 } { x ^ { 7 } }
B) x4x7+5x3- \frac { x } { 4 x ^ { 7 } + 5 x ^ { 3 } }
C) 4x4+5x6\frac { 4 x ^ { 4 } + 5 } { x ^ { 6 } }
D) x64x75x3x ^ { 6 } - 4 x ^ { 7 } - 5 x ^ { 3 }
E) 1x10- \frac { 1 } { x ^ { 10 } }
Question
Change the radical to simplest radical form. 4088\frac { \sqrt { 40 } } { \sqrt { 88 } }

A) 115511 \sqrt { 55 }
B) 5511\frac { \sqrt { 55 } } { 11 }
C) 85511\frac { 8 \sqrt { 55 } } { 11 }
D) 4088\sqrt { \frac { 40 } { 88 } }
E) 5588\frac { \sqrt { 55 } } { 88 }
Question
Simplify the expression. 128x4y5354x4y53\sqrt [ 3 ] { 128 x ^ { 4 } y ^ { 5 } } - \sqrt [ 3 ] { 54 x ^ { 4 } y ^ { 5 } }

A) 2xy24xy232 x y ^ { 2 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
B) 2xy24xy23- 2 x y ^ { 2 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
C) 2x2y34xy232 x ^ { 2 } y ^ { 3 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
D) xy24xy3- x y ^ { 2 } \sqrt [ 3 ] { 4 x y }
E) xy2xy23x y \sqrt [ 3 ] { 2 x y ^ { 2 } }
Question
Find the following product and express your answer in simplest radical form. 4276+67\frac { \sqrt { 42 } } { 7 \sqrt { 6 } + 6 \sqrt { 7 } }

A) 67\sqrt { 6 } - \sqrt { 7 }
B) 76\sqrt { 7 } - \sqrt { 6 }
C) 427+6\frac { \sqrt { 42 } } { \sqrt { 7 } + \sqrt { 6 } }
D) 7+6\sqrt { 7 } + \sqrt { 6 }
E) 17+6\frac { 1 } { \sqrt { 7 } + \sqrt { 6 } }
Question
Rationalize the denominator and simplify. The variable represents a positive real number. xx10\frac { \sqrt { x } } { \sqrt { x } - 10 }

A) 10xx100\frac { 10 \sqrt { x } } { x - 100 }
B) x+10xx10\frac { x + 10 \sqrt { x } } { x - 10 }
C) x\sqrt { x }
D) 11xx100\frac { 11 x } { x - 100 }
E) x+10xx100\frac { x + 10 \sqrt { x } } { x - 100 }
Question
Find the following product and express your answer in simplest radical form. (411577)(4343+77)( 4 \sqrt { 11 } - 5 \sqrt { 77 } ) ( 4 \sqrt { 343 } + \sqrt { 77 } )

A) 11277447+98011+385- 112 \sqrt { 77 } - 44 \sqrt { 7 } + 980 \sqrt { 11 } + 385
B) 1127744119807+385112 \sqrt { 77 } - 44 \sqrt { 11 } - 980 \sqrt { 7 } + 385
C) 167+41138516 \sqrt { 7 } + 4 \sqrt { 11 } - 385
D) 11277+44798011385343112 \sqrt { 77 } + 44 \sqrt { 7 } - 980 \sqrt { 11 } - 385 \sqrt { 343 }
E) 11277+44798011385112 \sqrt { 77 } + 44 \sqrt { 7 } - 980 \sqrt { 11 } - 385
Question
Simplify the expression by using the distributive property. 611+2116 \sqrt { 11 } + 2 \sqrt { 11 }

A) 3030
B) 121112 \sqrt { 11 }
C) 8118 \sqrt { 11 }
D) 4114 \sqrt { 11 }
E) 7117 \sqrt { 11 }
Question
Multiply and simplify where possible. 820\sqrt { 8 } \sqrt { 20 }

A) 101010 \sqrt { 10 }
B) 2102 \sqrt { 10 }
C) 4104 \sqrt { 10 }
D) 10210 \sqrt { 2 }
E) 8108 \sqrt { 10 }
Question
Use the distributive property to help simplify the expression. 223+254321632 \sqrt [ 3 ] { 2 } + 2 \sqrt [ 3 ] { 54 } - 2 \sqrt [ 3 ] { 16 }

A) 6236 \sqrt [ 3 ] { 2 }
B) 423- 4 \sqrt [ 3 ] { 2 }
C) 433- 4 \sqrt [ 3 ] { 3 }
D) 4234 \sqrt [ 3 ] { 2 }
E) 4334 \sqrt [ 3 ] { 3 }
Question
Perform the indicated operation and express your answer in simplest radical form. 553\sqrt { 5 } \sqrt [ 3 ] { 5 }

A) 1255\sqrt [ 5 ] { 125 }
B) 3,1255\sqrt [ 5 ] { 3,125 }
C) 256\sqrt [ 6 ] { 25 }
D) 56\sqrt [ 6 ] { 5 }
E) 3,1256\sqrt [ 6 ] { 3,125 }
Question
Use the distributive property to help simplify the expression. 1321418\frac { 1 } { 3 } \sqrt { 2 } - \frac { 1 } { 4 } \sqrt { 18 }

A) 1252\frac { 12 } { 5 } \sqrt { 2 }
B) 5122- \frac { 5 } { 12 } \sqrt { 2 }
C) 5125- \frac { 5 } { 12 } \sqrt { 5 }
D) 5125\frac { 5 } { 12 } \sqrt { 5 }
E) 5122\frac { 5 } { 12 } \sqrt { 2 }
Question
Johannes Kepler discovered that a planet's mean distance RR from the sun (in astronomical units)is related to its period TT (in years)by the formula R=T2k3R = \sqrt [ 3 ] { \frac { T ^ { 2 } } { k } } Find RR when T=1.881T = 1.881 and k=1.002k = 1.002 .

A)1.52 AU
B)1.22 AU
C)1.37 AU
D)1.35 AU
E)1.45 AU
Question
Rationalize the denominator and simplify. 2121+1\frac { 21 } { \sqrt { 21 } + 1 }

A) 21(211)20\frac { 21 ( \sqrt { 21 } - 1 ) } { 20 }
B) 2121120\frac { 21 \sqrt { 21 } - 1 } { 20 }
C) 20(211)21\frac { 20 ( \sqrt { 21 } - 1 ) } { 21 }
D) 212120\frac { \sqrt { 21 } - 21 } { 20 }
E) 21(211)21 ( \sqrt { 21 } - 1 )
Question
Simplify the expression. All variables represent positive numbers. 2x318x3\sqrt { 2 x ^ { 3 } } - \sqrt { 18 x ^ { 3 } }

A) x3x- x \sqrt { 3 x }
B) x2x- x \sqrt { 2 x }
C) 2x2x- 2 x \sqrt { 2 x }
D) 2x3x- 2 x \sqrt { 3 x }
E) 2x5x- 2 x \sqrt { 5 x }
Question
Change the radical to simplest radical form. 14373\frac { \sqrt [ 3 ] { 14 } } { \sqrt [ 3 ] { 7 } }

A) 147\frac { 14 } { 7 }
B) 23\sqrt [ 3 ] { 2 }
C) 73\sqrt [ 3 ] { 7 }
D) 71437 \sqrt [ 3 ] { 14 }
E) 22
Question
The formula s=kds = k \sqrt { d } relates the speed ss (in mph)of a car and the distance dd of the skid when a driver hits the brakes. How far will a car skid if it is going 48 mph on dry pavement? On dry pavement, k=5.34k = 5.34 .

A)about 59 ft
B)about 76 ft
C)about 99 ft
D)about 81 ft
E)about 70 ft
Question
Find the following product and express your answer in simplest radical form. All variables represent nonnegative real numbers. 5(3+7)\sqrt { 5 } ( \sqrt { 3 } + \sqrt { 7 } )

A) 53\sqrt { 5 } - \sqrt { 3 }
B) 37\sqrt { 3 } - 7
C) 5+7\sqrt { 5 } + \sqrt { 7 }
D) 15+35\sqrt { 15 } + \sqrt { 35 }
E) 1535\sqrt { 15 } - \sqrt { 35 }
Question
The power generated by a windmill is related to the speed of the wind by the formula S=P0.023S = \sqrt [ 3 ] { \frac { P } { 0.02 } } , where SS is the speed of the wind (in mph)and PP is the power (in watts). Find the speed of the wind when the windmill is producing 413 watts of power.

A)27.07 mph
B)28.99 mph
C)28.25 mph
D)27.44 mph
E)27.56 mph
Question
Solve the equation. Check all solutions. x=9\sqrt { x } = 9

A)81
B)41
C)9
D)79
E)no solution
Question
Multiply and simplify where possible. (1717)(49343)( - 17 \sqrt { 17 } ) ( - 49 \sqrt { 343 } )

A) 5,83175,831 \sqrt { 7 }
B) 833119833 \sqrt { 119 }
C) 1711917 \sqrt { 119 }
D) 5,8311195,831 \sqrt { 119 }
E) 343119343 \sqrt { 119 }
Question
Perform the multiplication. The variable represents a positive number. y(6y2)\sqrt { y } ( \sqrt { 6 y } - 2 )

A) y26yy \sqrt { 2 } - 6 \sqrt { y }
B) y6+2yy \sqrt { 6 } + 2 \sqrt { y }
C) y62yy \sqrt { 6 } - 2 \sqrt { y }
D) 6y2y6 y - 2 \sqrt { y }
E) 6yy26 \sqrt { y } - y \sqrt { 2 }
Question
Simplify the expression. 8xy375y3x\sqrt { 8 x y ^ { 3 } } - \sqrt { 75 y ^ { 3 } x }

A) 2y22xy5y23xy2 y ^ { 2 } \sqrt { 2 x y } - 5 y ^ { 2 } \sqrt { 3 x y }
B) 2y2xy5y3xy2 y \sqrt { 2 x y } - 5 y \sqrt { 3 x y }
C) 3y2xy5y3xy3 y \sqrt { 2 x y } - 5 y \sqrt { 3 x y }
D) 2y4xy5y15xy2 y \sqrt { 4 x y } - 5 y \sqrt { 15 x y }
E)none of the above
Question
The formula s=kds = k \sqrt { d } relates the speed ss (in mph)of a car and the distance dd of the skid when a driver hits the brakes. On wet pavement, k=3.24k = 3.24 . How far will a car skid if it is going 51 mph?

A)about 225 ft
B)about 282 ft
C)about 248 ft
D)about 203 ft
E)about 236 ft
Question
Change the radical to an exponential expression. m2+k2\sqrt { m ^ { 2 } + k ^ { 2 } }

A) (m2+k2)2\left( m ^ { 2 } + k ^ { 2 } \right) ^ { 2 }
B) m32+k32m ^ { \frac { 3 } { 2 } } + k ^ { \frac { 3 } { 2 } }
C) (m+k)12( m + k ) ^ { \frac { 1 } { 2 } }
D) (m2+k2)12\left( m ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } }
E) (m+k)32( m + k ) ^ { \frac { 3 } { 2 } }
Question
Write x34y14x ^ { \frac { 3 } { 4 } } y ^ { \frac { 1 } { 4 } } in radical form. For example, 3x23=3x233 x ^ { \frac { 2 } { 3 } } = 3 \sqrt [ 3 ] { x ^ { 2 } } .

A) 1x3y4\frac { 1 } { \sqrt [ 4 ] { x ^ { 3 } y } }
B) x3y4\sqrt [ 4 ] { x ^ { 3 } y }
C) x4y\sqrt { x ^ { 4 } y }
D) yx34y \sqrt [ 4 ] { x ^ { 3 } }
E) x4y3\sqrt [ 3 ] { x ^ { 4 } y }
Question
Perform the indicated operation and express your answer in simplest radical form. 8384\frac { \sqrt [ 3 ] { 8 } } { \sqrt [ 4 ] { 8 } }

A) 8- \sqrt { 8 }
B) 812\sqrt [ 12 ] { 8 }
C) 18128\frac { 1 } { \sqrt [ 12 ] { 8 } \sqrt { 8 } }
D) 87\sqrt [ 7 ] { 8 }
E) 6412\sqrt [ 12 ] { 64 }
Question
Perform the indicated operation and express your answer in simplest radical form. 51248\frac { \sqrt [ 4 ] { 512 } } { \sqrt { 8 } } Express answers in simplest radical form.

A) 83\sqrt [ 3 ] { 8 }
B) 5123\sqrt [ 3 ] { 512 }
C) 84\sqrt [ 4 ] { 8 }
D) 5124\sqrt [ 4 ] { 512 }
E) 644\sqrt [ 4 ] { 64 }
Question
Simplify the expression. (2431024)15\left( - \frac { 243 } { 1024 } \right) ^ { \frac { 1 } { 5 } }

A) 81256- \frac { 81 } { 256 }
B) 34- \frac { 3 } { 4 }
C) 43- \frac { 4 } { 3 }
D) 2434- \frac { 243 } { 4 }
E) 56- \frac { 5 } { 6 }
Question
Change the expression into radical notation. Change the expression into radical notation.  <div style=padding-top: 35px>
Question
The number of wrenches that can be produced at a given price can be predicted by the formula s=65xs = \sqrt { 65 x } , where ss is the supply (in thousands)and XX is the price (in dollars). If the demand dd for the wrenches can be predicted by the formula d=3244x2d = \sqrt { 324 - 4 x ^ { 2 } } , find the equilibrium price.

A)$6
B)$5
C)$4
D)None of the above
Question
Write x+y9- \sqrt [ 9 ] { x + y } using positive rational exponents.

A) (x+y)9- ( x + y ) ^ { 9 }
B) (xy)19( - x - y ) ^ { \frac { 1 } { 9 } }
C) (x+y)29- ( x + y ) ^ { \frac { 2 } { 9 } }
D) (x+y)19( x + y ) ^ { - \frac { 1 } { 9 } }
E) (x+y)19- ( x + y ) ^ { \frac { 1 } { 9 } }
Question
The formula T=2πL32T = 2 \pi \sqrt { \frac { L } { 32 } } represents the period of a pendulum T (in seconds), L - the length of the pendulum (in feet). Solve the formula for L if T = 39.4384 sec, π = 3.14.

A)78.8768 feet
B)100.48 feet
C)128 feet
D)32 feet
Question
Simplify the expression. 2452652 ^ { \frac { 4 } { 5 } } 2 ^ { \frac { 6 } { 5 } }

A)16
B) 2152 ^ { \frac { 1 } { 5 } }
C)2
D)4
E)81
Question
Simplify the expression. 163216 ^ { \frac { 3 } { 2 } }

A)16
B)7,776
C)36
D)11
E)1,024
Question
Simplify the expression. 12513125 ^ { \frac { 1 } { 3 } }

A) 15\frac { 1 } { 5 }
B) 1212
C) 128\frac { 1 } { 28 }
D) 22
E) 55
Question
Write 4x274 x ^ { \frac { 2 } { 7 } } in radical form. For example, 3x23=3x233 x ^ { \frac { 2 } { 3 } } = 3 \sqrt [ 3 ] { x ^ { 2 } }

A) 14x27\frac { 1 } { 4 \sqrt [ 7 ] { x ^ { 2 } } }
B) x5\sqrt { x ^ { 5 } } x7\sqrt { x ^ { 7 } }
C) 4x274 \sqrt [ 7 ] { x ^ { 2 } }
D) 4x724 \sqrt [ 2 ] { x ^ { 7 } }
E) 4x27\sqrt [ 7 ] { 4 x ^ { 2 } }
Question
Write 2y11132 \sqrt [ 13 ] { y ^ { 11 } } using positive rational exponents. For example, ab=(ab)12=a12b12\sqrt { a b } = ( a b ) ^ { \frac { 1 } { 2 } } = a ^ { \frac { 1 } { 2 } } b ^ { \frac { 1 } { 2 } } .

A) 4y4 y
B) (4y)513( 4 y ) ^ { \frac { 5 } { 13 } }
C) y513y ^ { \frac { 5 } { 13 } }
D) 22y1322 y ^ { 13 }
E) 4y1354 y ^ { \frac { 13 } { 5 } }
Question
Simplify the expression. 271327 ^ { \frac { 1 } { 3 } }

A) 13\frac { 1 } { 3 }
B) 99
C) 132\frac { 1 } { 32 }
D) 22
E) 33
Question
Perform the indicated operation and express your answer in simplest radical form. 553\sqrt { 5 } \cdot \sqrt [ 3 ] { 5 }

A) 1255\sqrt [ 5 ] { 125 }
B) 3,1255\sqrt [ 5 ] { 3,125 }
C) 256\sqrt [ 6 ] { 25 }
D) 56\sqrt [ 6 ] { 5 }
E) 3,1256\sqrt [ 6 ] { 3,125 }
Question
Simplify the expression. (2536)32\left( \frac { 25 } { 36 } \right) ^ { \frac { 3 } { 2 } }

A) 56\frac { 5 } { 6 }
B) 6251,296\frac { 625 } { 1,296 }
C) 125216\frac { 125 } { 216 }
D) 216125\frac { 216 } { 125 }
E) 126217\frac { 126 } { 217 }
Question
Solve the equation. Write all solutions and then indicate which of those solutions are extraneous. x3+1,85436=x\sqrt [ 3 ] { x ^ { 3 } + 1,854 } - 6 = x

A) x=7,x=13x = 7 , x = - 13 is extraneous
B) x=6,x=13x = 6 , x = - 13 is extraneous
C) x=6,x=13x = 6 , x = - 13
D) x=7,x=5x = 7 , x = - 5
E) x=7,x=13x = 7 , x = - 13
Question
Solve the equation. Check all solutions. x64=5\sqrt { x - 6 } - 4 = 5

A)85
B)64
C)87
D)76
E)no solution
Question
Write the number 330,000 in scientific notation.

A) 33×10533 \times 10 ^ { 5 }
B) 33×10633 \times 10 ^ { 6 }
C) 3.3×1043.3 \times 10 ^ { 4 }
D) 33×10433 \times 10 ^ { 4 }
E) 3.3×1053.3 \times 10 ^ { 5 }
Question
Write the number 0.00061 in scientific notation.

A) 61×10461 \times 10 ^ { - 4 }
B) 6.1×1066.1 \times 10 ^ { - 6 }
C) 61×10561 \times 10 ^ { - 5 }
D) 6.1×1046.1 \times 10 ^ { - 4 }
E) 6.1×1056.1 \times 10 ^ { - 5 }
Question
The distance from earth to a certain star outside our solar system is 25,800,000,000,000 miles. Express this number in scientific notation.

A) 2.58×10132.58 \times 10 ^ { - 13 } miles
B) 25.8×101225.8 \times 10 ^ { - 12 } miles
C) 2.58×10132.58 \times 10 ^ { 13 } miles
D) 2.58×10122.58 \times 10 ^ { 12 } miles
E) 25.8×101225.8 \times 10 ^ { 12 } miles
Question
Write the number 0.07×1050.07 \times 10 ^ { 5 } in standard notation.

A)7,000,000
B)7
C)700
D)7,000
E)70,000
Question
Write the number 511×102511 \times 10 ^ { - 2 } in standard notation.

A)5.11
B)51.1
C)5,110
D)0.00511
E)51,100
Question
Use scientific notation and the properties of exponents to help you perform the following operation. Express the answer in ordinary decimal notation. (0.006)(110,000)

A)6600
B)660
C)11.6
D)7100
E)710
Question
Write the number 48.3×10348.3 \times 10 ^ { 3 } in scientific notation.

A) 483×102483 \times 10 ^ { 2 }
B)48,300
C) 4.83×1034.83 \times 10 ^ { 3 }
D) 4.83×1044.83 \times 10 ^ { 4 }
E) 4.83×1054.83 \times 10 ^ { 5 }
Question
Use scientific notation and the rules for exponents to simplify the following expression. Express your answer in standard notation. (7.6×102)(2.6×103)\left( 7.6 \times 10 ^ { 2 } \right) \left( 2.6 \times 10 ^ { 3 } \right)

A)1,976,000
B)197,600
C)1,976,000,000
D)197,600,000
E)19,760,000
Question
The distance between the Sun and Mercury is approximately 3.6×1073.6 \times 10 ^ { 7 } miles. Use scientific notation to express this distance in feet. ( Hint: 5,280 feet = 1 mile.)

A) 190.08×109190.08 \times 10 ^ { 9 } ft
B) 0.19008×10120.19008 \times 10 ^ { 12 } ft
C) 1.9008×10121.9008 \times 10 ^ { 12 } ft
D) 1.9008×10111.9008 \times 10 ^ { 11 } ft
E) 19.008×101019.008 \times 10 ^ { 10 } ft
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/69
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Exponents and Radicals
1
Simplify the numerical expression. 15(6)43(5)3+7(4)+1215 ( - 6 ) ^ { 4 } - 3 ( - 5 ) ^ { 3 } + 7 ( - 4 ) + 12

A)19,799
B)6,593
C)-16
D)-331
E)65,613,359
19,799
2
Simplify the expression. Express the final result without using zero or negative integers as exponents. a4a5a2a ^ { 4 } \cdot a ^ { - 5 } \cdot a ^ { - 2 }

A) a4a7\frac { a ^ { 4 } } { a ^ { 7 } }
B) 1a3\frac { 1 } { a ^ { 3 } }
C) 1a4\frac { 1 } { a ^ { 4 } }
D) aa
E) a4a10\frac { a ^ { 4 } } { a ^ { 10 } }
1a3\frac { 1 } { a ^ { 3 } }
3
Find a rational approximation, to the nearest tenth, for the radical expression. 25+552 \sqrt { 5 } + 5 \sqrt { 5 }

A) 13.813.8
B) 19.219.2
C) 16.716.7
D) 16.816.8
E) 15.715.7
15.715.7
4
Simplify the expression. (7x8)2\left( 7 x ^ { 8 } \right) ^ { 2 }

A) 7x167 x ^ { 16 }
B) 7x87 x ^ { 8 }
C) 49x1749 x ^ { 17 }
D) 49x1649 x ^ { 16 }
E) 49x1549 x ^ { 15 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
5
Simplify the numerical expression. 103- 10 ^ { - 3 }

A) 1100\frac { 1 } { 100 }
B) 1,000- 1,000
C) 31,000- \frac { 3 } { 1,000 }
D) 11,000\frac { 1 } { 1,000 }
E) 11,000- \frac { 1 } { 1,000 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
6
Use a calculator to find a rational approximation of the square root. Express your answer to the nearest hundredth. 27\sqrt { 27 }

A) 2.602.60
B) 5.405.40
C) 5.205.20
D) 5.105.10
E) 10.3910.39
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
7
Find the indicated product. Express the final result using positive integral exponents only. (2xy4)(4x4y7)\left( 2 x y ^ { - 4 } \right) \left( 4 x ^ { - 4 } y ^ { 7 } \right)

A) 8y3x3\frac { 8 y ^ { 3 } } { x ^ { 3 } }
B) 8x3y38 x ^ { - 3 } y ^ { 3 }
C) 8x3y38 x ^ { 3 } y ^ { 3 }
D) x38y3\frac { x ^ { 3 } } { 8 y ^ { 3 } }
E) y78xy8\frac { y ^ { 7 } } { 8 x y ^ { 8 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
8
Write the quotient as the quotient of two radicals and simplify. 169100\sqrt { \frac { 169 } { 100 } }

A) 710\frac { 7 } { 10 }
B) 107\frac { 10 } { 7 }
C) 1310\frac { 13 } { 10 }
D) 1013\frac { 10 } { 13 }
E) 16910\frac { 169 } { 10 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
9
Express the following as a single fraction involving positive exponents only. 4x35x74 x ^ { - 3 } - 5 x ^ { - 7 }

A) 1x10- \frac { 1 } { x ^ { 10 } }
B) 4x75x34 x ^ { 7 } - 5 x ^ { 3 }
C) 4x45x7\frac { 4 x ^ { 4 } - 5 } { x ^ { 7 } }
D) 4x45x6\frac { 4 x ^ { 4 } - 5 } { x ^ { 6 } }
E) 14x75x3\frac { 1 } { 4 x ^ { 7 } - 5 x ^ { 3 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
10
Simplify the numerical expression. Simplify the numerical expression.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
11
Find the indicated quotient. Express the final result using positive integral exponents only. (63x2y29xy7)2\left( \frac { 63 x ^ { - 2 } y ^ { - 2 } } { 9 x y ^ { 7 } } \right) ^ { - 2 }

A) 149x16y18\frac { 1 } { 49 x ^ { 16 } y ^ { 18 } }
B) 49x4y549 x ^ { 4 } y ^ { 5 }
C) 49x16y1049 x ^ { 16 } y ^ { 10 }
D) x16y1849\frac { x ^ { 16 } y ^ { 18 } } { 49 }
E) 49x16y18\frac { 49 } { x ^ { 16 } y ^ { 18 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
12
Find a rational approximation, to the nearest tenth, for the radical expression. 7383+10373937 \sqrt { 3 } - 8 \sqrt { 3 } + 10 \sqrt { 3 } - 7 \sqrt { 3 } - 9 \sqrt { 3 }

A) 8.8- 8.8
B) 11.4- 11.4
C) 13.1- 13.1
D) 11.3- 11.3
E) 12.1- 12.1
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify the radical. 32\sqrt { 32 }

A) 434 \sqrt { 3 }
B) 535 \sqrt { 3 }
C) 1616
D) 424 \sqrt { 2 }
E) 525 \sqrt { 2 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
14
Find the indicated product. Express the final result using positive integral exponents only. 3xy25x3y43 x y ^ { - 2 } 5 x ^ { - 3 } y ^ { 4 }

A) y415xy5\frac { y ^ { 4 } } { 15 x y ^ { 5 } }
B) 15x2y215 x ^ { - 2 } y ^ { 2 }
C) x215y2\frac { x ^ { 2 } } { 15 y ^ { 2 } }
D) 15x2y215 x ^ { 2 } y ^ { 2 }
E) 15y2x2\frac { 15 y ^ { 2 } } { x ^ { 2 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
15
Change the radical to simplest radical form. 6122121- \frac { 6 \sqrt { 12 } } { 21 \sqrt { 21 } }

A) 2149- \frac { \sqrt { 21 } } { 49 }
B) 212112\frac { 21 } { 21 } \sqrt { 12 }
C) 474 \sqrt { 7 }
D) 4497- \frac { 4 } { 49 } \sqrt { 7 }
E) 2747- \frac { 2 } { 7 } \frac { \sqrt { 4 } } { \sqrt { 7 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
16
Simplify the numerical expression. (2332)1\left( 2 ^ { 3 } 3 ^ { - 2 } \right) ^ { - 1 }

A) 98\frac { 9 } { 8 }
B) 89\frac { 8 } { 9 }
C) 16\frac { 1 } { 6 }
D) 13\frac { 1 } { 3 }
E) 32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
17
Simplify the expression. 200+700175\sqrt { 200 } + \sqrt { 700 } - \sqrt { 175 }

A) 1025710 \sqrt { 2 } - 5 \sqrt { 7 }
B) 102+5710 \sqrt { 2 } + 5 \sqrt { 7 }
C) 22+572 \sqrt { 2 } + 5 \sqrt { 7 }
D) 52+275 \sqrt { 2 } + 2 \sqrt { 7 }
E) 22572 \sqrt { 2 } - 5 \sqrt { 7 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
18
Simplify the expression. Express final result without using zero or negative integers as exponents. (x1y4)3\left( \frac { x ^ { - 1 } } { y ^ { - 4 } } \right) ^ { - 3 }

A) x3y12\frac { x ^ { 3 } } { y ^ { 12 } }
B) y7x4\frac { y ^ { 7 } } { x ^ { 4 } }
C) x4y12\frac { x ^ { 4 } } { y ^ { 12 } }
D) y12x3\frac { y ^ { 12 } } { x ^ { 3 } }
E) x4y7\frac { x ^ { 4 } } { y ^ { 7 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
19
Express the following as a single fraction involving positive exponents only. 4x35x7+x- 4 x ^ { - 3 } - 5 x ^ { - 7 } + x

A) x64x45x7\frac { x ^ { 6 } - 4 x ^ { 4 } - 5 } { x ^ { 7 } }
B) x4x7+5x3- \frac { x } { 4 x ^ { 7 } + 5 x ^ { 3 } }
C) 4x4+5x6\frac { 4 x ^ { 4 } + 5 } { x ^ { 6 } }
D) x64x75x3x ^ { 6 } - 4 x ^ { 7 } - 5 x ^ { 3 }
E) 1x10- \frac { 1 } { x ^ { 10 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
20
Change the radical to simplest radical form. 4088\frac { \sqrt { 40 } } { \sqrt { 88 } }

A) 115511 \sqrt { 55 }
B) 5511\frac { \sqrt { 55 } } { 11 }
C) 85511\frac { 8 \sqrt { 55 } } { 11 }
D) 4088\sqrt { \frac { 40 } { 88 } }
E) 5588\frac { \sqrt { 55 } } { 88 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
21
Simplify the expression. 128x4y5354x4y53\sqrt [ 3 ] { 128 x ^ { 4 } y ^ { 5 } } - \sqrt [ 3 ] { 54 x ^ { 4 } y ^ { 5 } }

A) 2xy24xy232 x y ^ { 2 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
B) 2xy24xy23- 2 x y ^ { 2 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
C) 2x2y34xy232 x ^ { 2 } y ^ { 3 } \sqrt [ 3 ] { 4 x y ^ { 2 } }
D) xy24xy3- x y ^ { 2 } \sqrt [ 3 ] { 4 x y }
E) xy2xy23x y \sqrt [ 3 ] { 2 x y ^ { 2 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
22
Find the following product and express your answer in simplest radical form. 4276+67\frac { \sqrt { 42 } } { 7 \sqrt { 6 } + 6 \sqrt { 7 } }

A) 67\sqrt { 6 } - \sqrt { 7 }
B) 76\sqrt { 7 } - \sqrt { 6 }
C) 427+6\frac { \sqrt { 42 } } { \sqrt { 7 } + \sqrt { 6 } }
D) 7+6\sqrt { 7 } + \sqrt { 6 }
E) 17+6\frac { 1 } { \sqrt { 7 } + \sqrt { 6 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
23
Rationalize the denominator and simplify. The variable represents a positive real number. xx10\frac { \sqrt { x } } { \sqrt { x } - 10 }

A) 10xx100\frac { 10 \sqrt { x } } { x - 100 }
B) x+10xx10\frac { x + 10 \sqrt { x } } { x - 10 }
C) x\sqrt { x }
D) 11xx100\frac { 11 x } { x - 100 }
E) x+10xx100\frac { x + 10 \sqrt { x } } { x - 100 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
24
Find the following product and express your answer in simplest radical form. (411577)(4343+77)( 4 \sqrt { 11 } - 5 \sqrt { 77 } ) ( 4 \sqrt { 343 } + \sqrt { 77 } )

A) 11277447+98011+385- 112 \sqrt { 77 } - 44 \sqrt { 7 } + 980 \sqrt { 11 } + 385
B) 1127744119807+385112 \sqrt { 77 } - 44 \sqrt { 11 } - 980 \sqrt { 7 } + 385
C) 167+41138516 \sqrt { 7 } + 4 \sqrt { 11 } - 385
D) 11277+44798011385343112 \sqrt { 77 } + 44 \sqrt { 7 } - 980 \sqrt { 11 } - 385 \sqrt { 343 }
E) 11277+44798011385112 \sqrt { 77 } + 44 \sqrt { 7 } - 980 \sqrt { 11 } - 385
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
25
Simplify the expression by using the distributive property. 611+2116 \sqrt { 11 } + 2 \sqrt { 11 }

A) 3030
B) 121112 \sqrt { 11 }
C) 8118 \sqrt { 11 }
D) 4114 \sqrt { 11 }
E) 7117 \sqrt { 11 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
26
Multiply and simplify where possible. 820\sqrt { 8 } \sqrt { 20 }

A) 101010 \sqrt { 10 }
B) 2102 \sqrt { 10 }
C) 4104 \sqrt { 10 }
D) 10210 \sqrt { 2 }
E) 8108 \sqrt { 10 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
27
Use the distributive property to help simplify the expression. 223+254321632 \sqrt [ 3 ] { 2 } + 2 \sqrt [ 3 ] { 54 } - 2 \sqrt [ 3 ] { 16 }

A) 6236 \sqrt [ 3 ] { 2 }
B) 423- 4 \sqrt [ 3 ] { 2 }
C) 433- 4 \sqrt [ 3 ] { 3 }
D) 4234 \sqrt [ 3 ] { 2 }
E) 4334 \sqrt [ 3 ] { 3 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
28
Perform the indicated operation and express your answer in simplest radical form. 553\sqrt { 5 } \sqrt [ 3 ] { 5 }

A) 1255\sqrt [ 5 ] { 125 }
B) 3,1255\sqrt [ 5 ] { 3,125 }
C) 256\sqrt [ 6 ] { 25 }
D) 56\sqrt [ 6 ] { 5 }
E) 3,1256\sqrt [ 6 ] { 3,125 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
29
Use the distributive property to help simplify the expression. 1321418\frac { 1 } { 3 } \sqrt { 2 } - \frac { 1 } { 4 } \sqrt { 18 }

A) 1252\frac { 12 } { 5 } \sqrt { 2 }
B) 5122- \frac { 5 } { 12 } \sqrt { 2 }
C) 5125- \frac { 5 } { 12 } \sqrt { 5 }
D) 5125\frac { 5 } { 12 } \sqrt { 5 }
E) 5122\frac { 5 } { 12 } \sqrt { 2 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
30
Johannes Kepler discovered that a planet's mean distance RR from the sun (in astronomical units)is related to its period TT (in years)by the formula R=T2k3R = \sqrt [ 3 ] { \frac { T ^ { 2 } } { k } } Find RR when T=1.881T = 1.881 and k=1.002k = 1.002 .

A)1.52 AU
B)1.22 AU
C)1.37 AU
D)1.35 AU
E)1.45 AU
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
31
Rationalize the denominator and simplify. 2121+1\frac { 21 } { \sqrt { 21 } + 1 }

A) 21(211)20\frac { 21 ( \sqrt { 21 } - 1 ) } { 20 }
B) 2121120\frac { 21 \sqrt { 21 } - 1 } { 20 }
C) 20(211)21\frac { 20 ( \sqrt { 21 } - 1 ) } { 21 }
D) 212120\frac { \sqrt { 21 } - 21 } { 20 }
E) 21(211)21 ( \sqrt { 21 } - 1 )
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
32
Simplify the expression. All variables represent positive numbers. 2x318x3\sqrt { 2 x ^ { 3 } } - \sqrt { 18 x ^ { 3 } }

A) x3x- x \sqrt { 3 x }
B) x2x- x \sqrt { 2 x }
C) 2x2x- 2 x \sqrt { 2 x }
D) 2x3x- 2 x \sqrt { 3 x }
E) 2x5x- 2 x \sqrt { 5 x }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
33
Change the radical to simplest radical form. 14373\frac { \sqrt [ 3 ] { 14 } } { \sqrt [ 3 ] { 7 } }

A) 147\frac { 14 } { 7 }
B) 23\sqrt [ 3 ] { 2 }
C) 73\sqrt [ 3 ] { 7 }
D) 71437 \sqrt [ 3 ] { 14 }
E) 22
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
34
The formula s=kds = k \sqrt { d } relates the speed ss (in mph)of a car and the distance dd of the skid when a driver hits the brakes. How far will a car skid if it is going 48 mph on dry pavement? On dry pavement, k=5.34k = 5.34 .

A)about 59 ft
B)about 76 ft
C)about 99 ft
D)about 81 ft
E)about 70 ft
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
35
Find the following product and express your answer in simplest radical form. All variables represent nonnegative real numbers. 5(3+7)\sqrt { 5 } ( \sqrt { 3 } + \sqrt { 7 } )

A) 53\sqrt { 5 } - \sqrt { 3 }
B) 37\sqrt { 3 } - 7
C) 5+7\sqrt { 5 } + \sqrt { 7 }
D) 15+35\sqrt { 15 } + \sqrt { 35 }
E) 1535\sqrt { 15 } - \sqrt { 35 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
36
The power generated by a windmill is related to the speed of the wind by the formula S=P0.023S = \sqrt [ 3 ] { \frac { P } { 0.02 } } , where SS is the speed of the wind (in mph)and PP is the power (in watts). Find the speed of the wind when the windmill is producing 413 watts of power.

A)27.07 mph
B)28.99 mph
C)28.25 mph
D)27.44 mph
E)27.56 mph
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the equation. Check all solutions. x=9\sqrt { x } = 9

A)81
B)41
C)9
D)79
E)no solution
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
38
Multiply and simplify where possible. (1717)(49343)( - 17 \sqrt { 17 } ) ( - 49 \sqrt { 343 } )

A) 5,83175,831 \sqrt { 7 }
B) 833119833 \sqrt { 119 }
C) 1711917 \sqrt { 119 }
D) 5,8311195,831 \sqrt { 119 }
E) 343119343 \sqrt { 119 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
39
Perform the multiplication. The variable represents a positive number. y(6y2)\sqrt { y } ( \sqrt { 6 y } - 2 )

A) y26yy \sqrt { 2 } - 6 \sqrt { y }
B) y6+2yy \sqrt { 6 } + 2 \sqrt { y }
C) y62yy \sqrt { 6 } - 2 \sqrt { y }
D) 6y2y6 y - 2 \sqrt { y }
E) 6yy26 \sqrt { y } - y \sqrt { 2 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
40
Simplify the expression. 8xy375y3x\sqrt { 8 x y ^ { 3 } } - \sqrt { 75 y ^ { 3 } x }

A) 2y22xy5y23xy2 y ^ { 2 } \sqrt { 2 x y } - 5 y ^ { 2 } \sqrt { 3 x y }
B) 2y2xy5y3xy2 y \sqrt { 2 x y } - 5 y \sqrt { 3 x y }
C) 3y2xy5y3xy3 y \sqrt { 2 x y } - 5 y \sqrt { 3 x y }
D) 2y4xy5y15xy2 y \sqrt { 4 x y } - 5 y \sqrt { 15 x y }
E)none of the above
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
41
The formula s=kds = k \sqrt { d } relates the speed ss (in mph)of a car and the distance dd of the skid when a driver hits the brakes. On wet pavement, k=3.24k = 3.24 . How far will a car skid if it is going 51 mph?

A)about 225 ft
B)about 282 ft
C)about 248 ft
D)about 203 ft
E)about 236 ft
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
42
Change the radical to an exponential expression. m2+k2\sqrt { m ^ { 2 } + k ^ { 2 } }

A) (m2+k2)2\left( m ^ { 2 } + k ^ { 2 } \right) ^ { 2 }
B) m32+k32m ^ { \frac { 3 } { 2 } } + k ^ { \frac { 3 } { 2 } }
C) (m+k)12( m + k ) ^ { \frac { 1 } { 2 } }
D) (m2+k2)12\left( m ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } }
E) (m+k)32( m + k ) ^ { \frac { 3 } { 2 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
43
Write x34y14x ^ { \frac { 3 } { 4 } } y ^ { \frac { 1 } { 4 } } in radical form. For example, 3x23=3x233 x ^ { \frac { 2 } { 3 } } = 3 \sqrt [ 3 ] { x ^ { 2 } } .

A) 1x3y4\frac { 1 } { \sqrt [ 4 ] { x ^ { 3 } y } }
B) x3y4\sqrt [ 4 ] { x ^ { 3 } y }
C) x4y\sqrt { x ^ { 4 } y }
D) yx34y \sqrt [ 4 ] { x ^ { 3 } }
E) x4y3\sqrt [ 3 ] { x ^ { 4 } y }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
44
Perform the indicated operation and express your answer in simplest radical form. 8384\frac { \sqrt [ 3 ] { 8 } } { \sqrt [ 4 ] { 8 } }

A) 8- \sqrt { 8 }
B) 812\sqrt [ 12 ] { 8 }
C) 18128\frac { 1 } { \sqrt [ 12 ] { 8 } \sqrt { 8 } }
D) 87\sqrt [ 7 ] { 8 }
E) 6412\sqrt [ 12 ] { 64 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
45
Perform the indicated operation and express your answer in simplest radical form. 51248\frac { \sqrt [ 4 ] { 512 } } { \sqrt { 8 } } Express answers in simplest radical form.

A) 83\sqrt [ 3 ] { 8 }
B) 5123\sqrt [ 3 ] { 512 }
C) 84\sqrt [ 4 ] { 8 }
D) 5124\sqrt [ 4 ] { 512 }
E) 644\sqrt [ 4 ] { 64 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
46
Simplify the expression. (2431024)15\left( - \frac { 243 } { 1024 } \right) ^ { \frac { 1 } { 5 } }

A) 81256- \frac { 81 } { 256 }
B) 34- \frac { 3 } { 4 }
C) 43- \frac { 4 } { 3 }
D) 2434- \frac { 243 } { 4 }
E) 56- \frac { 5 } { 6 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
47
Change the expression into radical notation. Change the expression into radical notation.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
48
The number of wrenches that can be produced at a given price can be predicted by the formula s=65xs = \sqrt { 65 x } , where ss is the supply (in thousands)and XX is the price (in dollars). If the demand dd for the wrenches can be predicted by the formula d=3244x2d = \sqrt { 324 - 4 x ^ { 2 } } , find the equilibrium price.

A)$6
B)$5
C)$4
D)None of the above
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
49
Write x+y9- \sqrt [ 9 ] { x + y } using positive rational exponents.

A) (x+y)9- ( x + y ) ^ { 9 }
B) (xy)19( - x - y ) ^ { \frac { 1 } { 9 } }
C) (x+y)29- ( x + y ) ^ { \frac { 2 } { 9 } }
D) (x+y)19( x + y ) ^ { - \frac { 1 } { 9 } }
E) (x+y)19- ( x + y ) ^ { \frac { 1 } { 9 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
50
The formula T=2πL32T = 2 \pi \sqrt { \frac { L } { 32 } } represents the period of a pendulum T (in seconds), L - the length of the pendulum (in feet). Solve the formula for L if T = 39.4384 sec, π = 3.14.

A)78.8768 feet
B)100.48 feet
C)128 feet
D)32 feet
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
51
Simplify the expression. 2452652 ^ { \frac { 4 } { 5 } } 2 ^ { \frac { 6 } { 5 } }

A)16
B) 2152 ^ { \frac { 1 } { 5 } }
C)2
D)4
E)81
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
52
Simplify the expression. 163216 ^ { \frac { 3 } { 2 } }

A)16
B)7,776
C)36
D)11
E)1,024
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
53
Simplify the expression. 12513125 ^ { \frac { 1 } { 3 } }

A) 15\frac { 1 } { 5 }
B) 1212
C) 128\frac { 1 } { 28 }
D) 22
E) 55
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
54
Write 4x274 x ^ { \frac { 2 } { 7 } } in radical form. For example, 3x23=3x233 x ^ { \frac { 2 } { 3 } } = 3 \sqrt [ 3 ] { x ^ { 2 } }

A) 14x27\frac { 1 } { 4 \sqrt [ 7 ] { x ^ { 2 } } }
B) x5\sqrt { x ^ { 5 } } x7\sqrt { x ^ { 7 } }
C) 4x274 \sqrt [ 7 ] { x ^ { 2 } }
D) 4x724 \sqrt [ 2 ] { x ^ { 7 } }
E) 4x27\sqrt [ 7 ] { 4 x ^ { 2 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
55
Write 2y11132 \sqrt [ 13 ] { y ^ { 11 } } using positive rational exponents. For example, ab=(ab)12=a12b12\sqrt { a b } = ( a b ) ^ { \frac { 1 } { 2 } } = a ^ { \frac { 1 } { 2 } } b ^ { \frac { 1 } { 2 } } .

A) 4y4 y
B) (4y)513( 4 y ) ^ { \frac { 5 } { 13 } }
C) y513y ^ { \frac { 5 } { 13 } }
D) 22y1322 y ^ { 13 }
E) 4y1354 y ^ { \frac { 13 } { 5 } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
56
Simplify the expression. 271327 ^ { \frac { 1 } { 3 } }

A) 13\frac { 1 } { 3 }
B) 99
C) 132\frac { 1 } { 32 }
D) 22
E) 33
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
57
Perform the indicated operation and express your answer in simplest radical form. 553\sqrt { 5 } \cdot \sqrt [ 3 ] { 5 }

A) 1255\sqrt [ 5 ] { 125 }
B) 3,1255\sqrt [ 5 ] { 3,125 }
C) 256\sqrt [ 6 ] { 25 }
D) 56\sqrt [ 6 ] { 5 }
E) 3,1256\sqrt [ 6 ] { 3,125 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
58
Simplify the expression. (2536)32\left( \frac { 25 } { 36 } \right) ^ { \frac { 3 } { 2 } }

A) 56\frac { 5 } { 6 }
B) 6251,296\frac { 625 } { 1,296 }
C) 125216\frac { 125 } { 216 }
D) 216125\frac { 216 } { 125 }
E) 126217\frac { 126 } { 217 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
59
Solve the equation. Write all solutions and then indicate which of those solutions are extraneous. x3+1,85436=x\sqrt [ 3 ] { x ^ { 3 } + 1,854 } - 6 = x

A) x=7,x=13x = 7 , x = - 13 is extraneous
B) x=6,x=13x = 6 , x = - 13 is extraneous
C) x=6,x=13x = 6 , x = - 13
D) x=7,x=5x = 7 , x = - 5
E) x=7,x=13x = 7 , x = - 13
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
60
Solve the equation. Check all solutions. x64=5\sqrt { x - 6 } - 4 = 5

A)85
B)64
C)87
D)76
E)no solution
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
61
Write the number 330,000 in scientific notation.

A) 33×10533 \times 10 ^ { 5 }
B) 33×10633 \times 10 ^ { 6 }
C) 3.3×1043.3 \times 10 ^ { 4 }
D) 33×10433 \times 10 ^ { 4 }
E) 3.3×1053.3 \times 10 ^ { 5 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
62
Write the number 0.00061 in scientific notation.

A) 61×10461 \times 10 ^ { - 4 }
B) 6.1×1066.1 \times 10 ^ { - 6 }
C) 61×10561 \times 10 ^ { - 5 }
D) 6.1×1046.1 \times 10 ^ { - 4 }
E) 6.1×1056.1 \times 10 ^ { - 5 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
63
The distance from earth to a certain star outside our solar system is 25,800,000,000,000 miles. Express this number in scientific notation.

A) 2.58×10132.58 \times 10 ^ { - 13 } miles
B) 25.8×101225.8 \times 10 ^ { - 12 } miles
C) 2.58×10132.58 \times 10 ^ { 13 } miles
D) 2.58×10122.58 \times 10 ^ { 12 } miles
E) 25.8×101225.8 \times 10 ^ { 12 } miles
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
64
Write the number 0.07×1050.07 \times 10 ^ { 5 } in standard notation.

A)7,000,000
B)7
C)700
D)7,000
E)70,000
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
65
Write the number 511×102511 \times 10 ^ { - 2 } in standard notation.

A)5.11
B)51.1
C)5,110
D)0.00511
E)51,100
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
66
Use scientific notation and the properties of exponents to help you perform the following operation. Express the answer in ordinary decimal notation. (0.006)(110,000)

A)6600
B)660
C)11.6
D)7100
E)710
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
67
Write the number 48.3×10348.3 \times 10 ^ { 3 } in scientific notation.

A) 483×102483 \times 10 ^ { 2 }
B)48,300
C) 4.83×1034.83 \times 10 ^ { 3 }
D) 4.83×1044.83 \times 10 ^ { 4 }
E) 4.83×1054.83 \times 10 ^ { 5 }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
68
Use scientific notation and the rules for exponents to simplify the following expression. Express your answer in standard notation. (7.6×102)(2.6×103)\left( 7.6 \times 10 ^ { 2 } \right) \left( 2.6 \times 10 ^ { 3 } \right)

A)1,976,000
B)197,600
C)1,976,000,000
D)197,600,000
E)19,760,000
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
69
The distance between the Sun and Mercury is approximately 3.6×1073.6 \times 10 ^ { 7 } miles. Use scientific notation to express this distance in feet. ( Hint: 5,280 feet = 1 mile.)

A) 190.08×109190.08 \times 10 ^ { 9 } ft
B) 0.19008×10120.19008 \times 10 ^ { 12 } ft
C) 1.9008×10121.9008 \times 10 ^ { 12 } ft
D) 1.9008×10111.9008 \times 10 ^ { 11 } ft
E) 19.008×101019.008 \times 10 ^ { 10 } ft
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 69 flashcards in this deck.