Deck 10: Conics

Full screen (f)
exit full mode
Question
Write the standard form of the equation of the parabola with focus (4,5) and its vertex at (9,5).

A) (x9)2=20(y5)( x - 9 ) ^ { 2 } = 20 ( y - 5 )
B) (y5)2=20(x9)( y - 5 ) ^ { 2 } = 20 ( x - 9 )
C) (x9)2=20(y5)( x - 9 ) ^ { 2 } = - 20 ( y - 5 )
D) (x+9)2=20(y+5)( x + 9 ) ^ { 2 } = 20 ( y + 5 )
E) (y5)2=20(x9)( y - 5 ) ^ { 2 } = - 20 ( x - 9 )
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the standard form of the equation of the circle with the center at (0,0) that has a radius of 6.

A) y2=6x2y ^ { 2 } = 6 x ^ { 2 }
B) y2=36x2y ^ { 2 } = 36 x ^ { 2 }
C) x2+y2=6x ^ { 2 } + y ^ { 2 } = 6
D) x2+y2=36x ^ { 2 } + y ^ { 2 } = 36
E) y=6x2y = 6 x ^ { 2 }
Question
Write the standard form of the equation of the circle with the center at (4,2) that has radius 4.

A) (x4)2+(y2)2=4( x - 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 4
B) (x+4)2+(y+2)2=16( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 16
C) (x+4)2+(y+2)2=4( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 4
D) (x4)2+(y2)2=16( x - 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 16
E) (x+4)2+(y2)2=4( x + 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 4
Question
Graph the equation 4x2+4y2=644 x ^ { 2 } + 4 y ^ { 2 } = 64 .

A)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Graph the equation (x+1)2+(y+4)2=16( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16 .

A)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Graph the equation (x+2)2=3(y1)( x + 2 ) ^ { 2 } = - 3 ( y - 1 ) .

A)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the standard form of the equation of the circle with the center at (0,0) that passes through the point (6,2) .

A) x2+y2=8x ^ { 2 } + y ^ { 2 } = 8
B) x2+y2=40x ^ { 2 } + y ^ { 2 } = 40
C) 4y2=36x24 y ^ { 2 } = 36 x ^ { 2 }
D) 36y2=4x236 y ^ { 2 } = 4 x ^ { 2 }
E) (x6)2+(y2)2=40( x - 6 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 40
Question
Identify the center and radius of the circle x212x+y26y36=0x ^ { 2 } - 12 x + y ^ { 2 } - 6 y - 36 = 0 .

A)center: (12,6) radius: 216
B)center: (-6,-3) radius: 9
C)center: (6,3) radius: 36
D)center: (6,3) radius: 9
E)center: (12,6) radius: 36
Question
Graph the equation x2=5yx ^ { 2 } = - 5 y .

A)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the center and radius of the circle x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 .

A)center: (1,1) radius: 25
B)center: (5,5) radius: 5
C)center: (0,0) radius: 5
D)center: (5,5) radius: 1
E)center: (0,0) radius: 25
Question
Identify the center and radius of the circle (x2)2+(y7)2=81( x - 2 ) ^ { 2 } + ( y - 7 ) ^ { 2 } = 81 .

A)center: (-7,-2) radius: 9
B)center: (2,7) radius: 9
C)center: (2,7) radius: 81
D)center: (-2,-7) radius: 9
E)center: (7,2) radius: 81
Question
Graph the equation (y1)2=5(x2)( y - 1 ) ^ { 2 } = 5 ( x - 2 ) .

A)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the standard form of the equation of the circle with the center at (0,2) that passes through the point (7,3) .

A) x2+(y+2)2=50x ^ { 2 } + ( y + 2 ) ^ { 2 } = 50
B) x2+(y2)2=58x ^ { 2 } + ( y - 2 ) ^ { 2 } = 58
C) x2+(y2)2=50x ^ { 2 } + ( y - 2 ) ^ { 2 } = 50
D) (x2)2+y2=58( x - 2 ) ^ { 2 } + y ^ { 2 } = 58
E) (x+2)2+y2=50( x + 2 ) ^ { 2 } + y ^ { 2 } = 50
Question
Graph the equation y2=6xy ^ { 2 } = - 6 x .

A)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the center and radius of the circle 9x2+9y216=09 x ^ { 2 } + 9 y ^ { 2 } - 16 = 0 .

A)center: (3,3) radius: 4
B)center: (0,0) radius: 43 \frac{4}{3}
C)center: (0,0) radius: 34\frac { 3 } { 4 }
D)center: (0,4) radius: 13\frac { 1 } { 3 }
E)center: (0,4) radius: 19\frac { 1 } { 9 }
Question
Identify the center and radius of the circle x2+18x+y2+16y+45=0x ^ { 2 } + 18 x + y ^ { 2 } + 16 y + 45 = 0 .

A)center: (18,16)( 18,16 ) radius: 535
B)center: (9,8)( - 9 , - 8 ) radius: 45
C)center: (9,8)( 9,8 ) radius: 10
D)center: (18,16)( - 18 , - 16 ) radius: 45
E)center: (9,8)( - 9 , - 8 ) radius: 10
Question
Identify the center and radius of the circle 4x2+4y2=14 x ^ { 2 } + 4 y ^ { 2 } = 1 .

A)center: (0,0) radius: 14\frac { 1 } { 4 }
B)center: (1,1) radius: 4
C)center: (1,1) radius: 2
D)center: (2,2) radius: 1
E)center: (0,0) radius: 12\frac { 1 } { 2 }
Question
Write the standard form of the equation of the parabola with focus (0,-2) and its vertex at the origin.

A) y2=8yy ^ { 2 } = 8 y
B) x2=8xx ^ { 2 } = 8 x
C) y2=8xy ^ { 2 } = - 8 x
D) x2=8yx ^ { 2 } = - 8 y
E) x2=18yx ^ { 2 } = \frac { 1 } { 8 } y
Question
Write the standard form of the equation of the parabola with focus (-9,0) and its vertex at the origin.

A) x2=136yx ^ { 2 } = \frac { 1 } { 36 } y
B) y2=36yy ^ { 2 } = 36 y
C) x2=36xx ^ { 2 } = 36 x
D) x2=36yx ^ { 2 } = - 36 y
E) y2=36xy ^ { 2 } = - 36 x
Question
Write the standard form of the equation of the parabola with focus (-5,5) and its vertex at (-5,8) .

A) (y8)2=3(x+5)( y - 8 ) ^ { 2 } = - 3 ( x + 5 )
B) (y8)2=12(x+5)( y - 8 ) ^ { 2 } = 12 ( x + 5 )
C) (x+5)2=12(y8)( x + 5 ) ^ { 2 } = - 12 ( y - 8 )
D) (x+5)2=3(y8)( x + 5 ) ^ { 2 } = - 3 ( y - 8 )
E) (y8)2=12(x+5)( y - 8 ) ^ { 2 } = - 12 ( x + 5 )
Question
Write the standard form of the equation of the ellipse centered at the origin. Vertices: (6,0)(6,0)( - 6,0 ) ( 6,0 ) Co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) x26=y24\frac { x ^ { 2 } } { 6 } = \frac { y ^ { 2 } } { 4 }
B) 36x2+16y2=136 x ^ { 2 } + 16 y ^ { 2 } = 1
C) x24+y26=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 6 } = 1
D) x216+y236=0\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 0
E) x236+y216=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 16 } = 1
Question
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { x ^ { 2 } } { 4 } + \frac { 7 y ^ { 2 } } { 2 } = 1  B)  4 x ^ { 2 } + 784 y ^ { 2 } = 64  C)  \frac { x ^ { 2 } } { 16 } + \frac { 49 y ^ { 2 } } { 4 } = 1  D)  \frac { x ^ { 2 } } { 4 } + \frac { 2 y ^ { 2 } } { 7 } = 1  E)  \frac { x ^ { 2 } } { 16 } + \frac { 4 y ^ { 2 } } { 49 } = 1  <div style=padding-top: 35px>

A) x24+7y22=1\frac { x ^ { 2 } } { 4 } + \frac { 7 y ^ { 2 } } { 2 } = 1
B) 4x2+784y2=644 x ^ { 2 } + 784 y ^ { 2 } = 64
C) x216+49y24=1\frac { x ^ { 2 } } { 16 } + \frac { 49 y ^ { 2 } } { 4 } = 1
D) x24+2y27=1\frac { x ^ { 2 } } { 4 } + \frac { 2 y ^ { 2 } } { 7 } = 1
E) x216+4y249=1\frac { x ^ { 2 } } { 16 } + \frac { 4 y ^ { 2 } } { 49 } = 1
Question
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { ( x - 4 ) ^ { 2 } } { 2 } + \frac { ( y - 4 ) ^ { 2 } } { 3 } = 1  B)  \frac { ( x - 4 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 9 } = 1  D)  \frac { x ^ { 2 } + 4 } { 4 } + \frac { y ^ { 2 } + 4 } { 9 } = 1  E)  \frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 6 } = 1  <div style=padding-top: 35px>

A) (x4)22+(y4)23=1\frac { ( x - 4 ) ^ { 2 } } { 2 } + \frac { ( y - 4 ) ^ { 2 } } { 3 } = 1
B) (x4)24+(y4)29=1\frac { ( x - 4 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 9 } = 1
C) (x+4)24+(y+4)29=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 9 } = 1
D) x2+44+y2+49=1\frac { x ^ { 2 } + 4 } { 4 } + \frac { y ^ { 2 } + 4 } { 9 } = 1
E) (x+4)24+(y+4)26=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 6 } = 1
Question
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } + 2 } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  D)  \frac { ( x - 2 ) ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 8 } = 1  E)  \frac { ( x + 2 ) ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 4 } = 1  <div style=padding-top: 35px>

A) (x+2)29+y216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) (x2)29+y216=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
C) x2+29+y216=1\frac { x ^ { 2 } + 2 } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) (x2)26+y28=1\frac { ( x - 2 ) ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 8 } = 1
E) (x+2)23+y24=1\frac { ( x + 2 ) ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 4 } = 1
Question
Identify the vertices and co-vertices of the ellipse 9x2+49y24=09 x ^ { 2 } + 49 y ^ { 2 } - 4 = 0 .

A)vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) co-vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )
B)vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 ) co-vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 )
C)vertices: (32,0),(32,0)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) co-vertices: (0,72),(0,72)\left( 0 , - \frac { 7 } { 2 } \right) , \left( 0 , \frac { 7 } { 2 } \right)
D)vertices: (23,0),(23,0)\left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) co-vertices: (0,27),(0,27)\left( 0 , - \frac { 2 } { 7 } \right) , \left( 0 , \frac { 2 } { 7 } \right)
E)vertices: (0,27),(0,27)\left( 0 , - \frac { 2 } { 7 } \right) , \left( 0 , \frac { 2 } { 7 } \right) co-vertices: (32,0),(32,0)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right)
Question
Identify the vertex and focus of the parabola x218x+24y+249=0x ^ { 2 } - 18 x + 24 y + 249 = 0 .

A)vertex: (9,7)( 9 , - 7 ) focus: (105,7)( 105 , - 7 )
B)vertex: (9,7)( - 9,7 ) focus: (105,7)( - 105,7 )
C)vertex: (9,7)( 9 , - 7 ) focus: (105,7)( - 105 , - 7 )
D)vertex: (9,7)( 9 , - 7 ) focus: (9,13)( 9 , - 13 )
E)vertex: (9,7)( - 9,7 ) focus: (9,13)( - 9 , - 13 )
Question
Identify the vertex and focus of the parabola y2=7xy ^ { 2 } = - 7 x .

A)vertex: (0,0) focus: (74,0)\left( - \frac { 7 } { 4 } , 0 \right)
B)vertex: (0,0) focus: (17,0)\left( - \frac { 1 } { 7 } , 0 \right)
C)vertex: (0,0) focus: (-7,0)
D)vertex: (0,0) focus: (0,74)\left( 0 , \frac { 7 } { 4 } \right)
E)vertex: (0,0) focus: (0,17)\left( 0 , \frac { 1 } { 7 } \right)
Question
Graph the function (x2)29+(y+1)21=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1 .

A)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Graph the function x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1 .

A)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the vertices and center of the ellipse (x5)29+(y2)249=1\frac { ( x - 5 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 49 } = 1 .

A)vertices: (5,7),(5,7)( 5 , - 7 ) , ( 5,7 ) center: (5,2)
B)vertices: (3,2),(3,2)( 3,2 ) , ( 3,2 ) center: (5,2)
C)vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) center: (-5,-2)
D)vertices: (5,1),(5,5)( - 5 , - 1 ) , ( 5,5 ) center: (-5,-2)
E)vertices: (5,5),(5,9)( 5 , - 5 ) , ( 5,9 ) center: (5,2)
Question
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  B)  \frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 5 } = 1  C)  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1  D)  25 x ^ { 2 } + 9 y ^ { 2 } = 1  E)  \frac { 9 x ^ { 2 } } { 25 } + \frac { 25 y ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1
B) x23+y25=1\frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 5 } = 1
C) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
D) 25x2+9y2=125 x ^ { 2 } + 9 y ^ { 2 } = 1
E) 9x225+25y29=1\frac { 9 x ^ { 2 } } { 25 } + \frac { 25 y ^ { 2 } } { 9 } = 1
Question
Identify the vertex and focus of the parabola (x10)2+36(y+6)=0( x - 10 ) ^ { 2 } + 36 ( y + 6 ) = 0 .

A)vertex: (10,6)( 10 , - 6 ) focus: (154,6)( - 154 , - 6 )
B)vertex: (10,6)( 10 , - 6 ) focus: (10,15)( 10 , - 15 )
C)vertex: (10,6)( 10 , - 6 ) focus: (154,6)( 154 , - 6 )
D)vertex: (10,6)( - 10,6 ) focus: (10,15)( - 10 , - 15 )
E)vertex: (10,6)( - 10,6 ) focus: (154,6)( - 154,6 )
Question
A semicircular arch for a tunnel under a river has a diameter of 80 feet (see figure). Determine the height of the arch 4 feet from the edge of the tunnel.  <strong>A semicircular arch for a tunnel under a river has a diameter of 80 feet (see figure). Determine the height of the arch 4 feet from the edge of the tunnel.  </strong> A)36 feet B)  12 \sqrt { 11 }  feet C)  4 \sqrt { 19 }  feet D)  4 \sqrt { 399 }  feet E)  6  feet <div style=padding-top: 35px>

A)36 feet
B) 121112 \sqrt { 11 } feet
C) 4194 \sqrt { 19 } feet
D) 43994 \sqrt { 399 } feet
E) 66 feet
Question
Identify the vertex and focus of the parabola y=16x2y = \frac { 1 } { 6 } x ^ { 2 } .

A)vertex: (0,0) focus: (32,0)\left( \frac { 3 } { 2 } , 0 \right)
B)vertex: (0,0) focus: (0,23)\left( 0 , \frac { 2 } { 3 } \right)
C)vertex: (0,0) focus: (0,32)\left( 0 , \frac { 3 } { 2 } \right)
D)vertex: (0,0) focus: (0,124)\left( 0 , \frac { 1 } { 24 } \right)
E)vertex: (0,0) focus: (23,0)\left( \frac { 2 } { 3 } , 0 \right)
Question
Write the standard form of the equation of the ellipse centered at the origin, having a horizontal major axis of 6 units and a minor axis of 4 units.

A) x26+y24=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 4 } = 1
B) x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1
C) x216+y236=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 1
D) x28+y218=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 18 } = 1
E) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
Question
Identify the vertices and co-vertices of the ellipse 25x2+16y29=025 x ^ { 2 } + 16 y ^ { 2 } - 9 = 0 .

A)vertices: (0,34),(0,34)\left( 0 , - \frac { 3 } { 4 } \right) , \left( 0 , \frac { 3 } { 4 } \right) co-vertices: (35,0),(35,0)\left( - \frac { 3 } { 5 } , 0 \right) , \left( \frac { 3 } { 5 } , 0 \right)
B)vertices: (53,0),(53,0)\left( - \frac { 5 } { 3 } , 0 \right) , \left( \frac { 5 } { 3 } , 0 \right) co-vertices: (0,43),(0,43)\left( 0 , - \frac { 4 } { 3 } \right) , \left( 0 , \frac { 4 } { 3 } \right)
C)vertices: (0,43),(0,43)\left( 0 , - \frac { 4 } { 3 } \right) , \left( 0 , \frac { 4 } { 3 } \right) co-vertices: (53,0),(53,0)\left( - \frac { 5 } { 3 } , 0 \right) , \left( \frac { 5 } { 3 } , 0 \right)
D)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
E)vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 ) co-vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
Question
Identify the vertices and co-vertices of the ellipse x249+y24=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1 .

A)vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) co-vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
B)vertices: (49,0),(49,0)( - 49,0 ) , ( 49,0 ) co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C)vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) co-vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )
D)vertices: (0,49),(0,49)( 0 , - 49 ) , ( 0,49 ) co-vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
E)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) co-vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 )
Question
Write the standard form of the equation of the ellipse centered at the origin, having a vertical 20 units and a minor axis of 10 units.

A) x225+y2100=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 100 } = 1
B) x2100+y225=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 25 } = 1
C) x250+y2200=1\frac { x ^ { 2 } } { 50 } + \frac { y ^ { 2 } } { 200 } = 1
D) x220+y210=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 10 } = 1
E) x2100+y2400=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 400 } = 1
Question
Graph the function x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 .

A)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Graph the function (x+2)24+(y+2)29=1\frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1 .

A)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 ) Asymptotes: y=14x,y=14xy = \frac { 1 } { 4 } x , y = - \frac { 1 } { 4 } x

A) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
B) y29x29/16=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 9 / 16 } = 1
C) (0,10)(32,314)( 0,10 ) \left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
D) y29x2144=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 144 } = 1
E) x29y2144=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 144 } = 1
Question
Identify the vertices and asymptotes of the hyperbola. x2y2=36x ^ { 2 } - y ^ { 2 } = 36

A)vertices: (6,6),(6,6)( 6 , - 6 ) , ( 6,6 ) asymptotes: y=6x,y=x6y = - 6 x , y = \frac { x } { 6 }
B)vertices: (36,0),(36,0)( - 36,0 ) , ( 36,0 ) asymptotes: y=x,y=xy = - x , y = x
C)vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) asymptotes: y=6x,y=x6y = - 6 x , y = \frac { x } { 6 }
D)vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 ) asymptotes: y=x,y=xy = - x , y = x
E)vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) asymptotes: y=x,y=xy = - x , y = x
Question
Identify the vertices and asymptotes of the hyperbola. x225y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1

A)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
B)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) asymptotes: y=95x,y=95xy = - \frac { 9 } { 5 } x , y = \frac { 9 } { 5 } x
C)vertices: (0,9),(0,9)( 0 , - 9 ) , ( 0,9 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
D)vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) asymptotes: y=95x,y=95xy = - \frac { 9 } { 5 } x , y = \frac { 9 } { 5 } x
E)vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
Question
Graph the hyperbola. y29x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1

A)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) Asymptotes: y=5x,y=5xy = 5 x , y = - 5 x

A) x24y24/25=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 4 / 25 } = 1
B) x24y2100=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 100 } = 1
C) x24/25y24=1\frac { x ^ { 2 } } { 4 / 25 } - \frac { y ^ { 2 } } { 4 } = 1
D) y2100x24=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 4 } = 1
E) x225y24=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1
Question
Identify the vertices and asymptotes of the hyperbola. y2x2=4y ^ { 2 } - x ^ { 2 } = 4

A)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) asymptotes: y=x,y=xy = - x , y = x
B)vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 ) asymptotes: y=x,y=xy = - x , y = x
C)vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) asymptotes: y=x,y=xy = - x , y = x
D)vertices: (2,2),(2,2)( - 2,2 ) , ( 2,2 ) asymptotes: y=2x,y=x2y = - 2 x , y = \frac { x } { 2 }
E)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) asymptotes: y=2x,y=x2y = - 2 x , y = \frac { x } { 2 }
Question
Graph the hyperbola. x2y2=16x ^ { 2 } - y ^ { 2 } = 16

A)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the vertices and asymptotes of the hyperbola. y249x2100=1\frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 100 } = 1

A)vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
B)vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 ) asymptotes: y=107x,y=107xy = - \frac { 10 } { 7 } x , y = \frac { 10 } { 7 } x
C)vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
D)vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
E)vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) asymptotes: y=107x,y=107xy = - \frac { 10 } { 7 } x , y = \frac { 10 } { 7 } x
Question
Identify the vertices and center of the ellipse. 36x2+25y2+72x200y464=036 x ^ { 2 } + 25 y ^ { 2 } + 72 x - 200 y - 464 = 0

A)vertices: (6,4),(4,4)( - 6,4 ) , ( 4,4 ) center: (-1,4)
B)vertices: (1,2),(1,10)( - 1 , - 2 ) , ( - 1,10 ) center: (-1,4)
C)vertices: (7,4),(5,4)( - 7,4 ) , ( 5,4 ) center: (-1,4)
D)vertices: (1,1),(1,9)( 1 , - 1 ) , ( - 1,9 ) center: (1,-4)
E)vertices: (1,10),(1,2)( 1 , - 10 ) , ( - 1,2 ) center: (1,-4)
Question
Graph the hyperbola. x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1

A)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet from the edge of the tunnel. Round your answer to one decimal place. <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px>

A) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet
B) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet
C) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet
D) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet
E) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet <div style=padding-top: 35px> feet
Question
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) Asymptotes: y=4x,y=4xy = 4 x , y = - 4 x

A) y24x21/4=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 1 / 4 } = 1
B) x24y264=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 64 } = 1
C) y24x264=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 64 } = 1
D) x264y24=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 4 } = 1
E) y21/4x24=1\frac { y ^ { 2 } } { 1 / 4 } - \frac { x ^ { 2 } } { 4 } = 1
Question
Graph the hyperbola. y2x2=36y ^ { 2 } - x ^ { 2 } = 36

A)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the vertices and center of the ellipse. 25(x2)2+9(y+6)2=425 ( x - 2 ) ^ { 2 } + 9 ( y + 6 ) ^ { 2 } = 4

A)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , \frac { 16 } { 3 } \right) center: (2,-6)
B)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (2,-6)
C)vertices: (2,203),(2,163)\left( 2 , \frac { 20 } { 3 } \right) , \left( 2 , \frac { 16 } { 3 } \right) center: (-2,6)
D)vertices: (2,203),(2,163)\left( 2 , \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (2,-6)
E)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (-2,6)
Question
Sketch the graph of the equation. (x+2)225(y1)24=1\frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the equation. y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the center and vertices of the hyperbola. (y1)2(x+6)2=9( y - 1 ) ^ { 2 } - ( x + 6 ) ^ { 2 } = 9

A)center: (6,1)( - 6,1 ) vertices: (6,2),(6,4)( - 6 , - 2 ) , ( - 6,4 )
B)center: (6,1)( 6 , - 1 ) vertices: (6,3),(6,3)( - 6,3 ) , ( - 6 , - 3 )
C)center: (6,1)( 6 , - 1 ) vertices: (3,1),(9,1)( 3 , - 1 ) , ( 9 , - 1 )
D)center: (6,1)( - 6,1 ) vertices: (9,1),(3,1)( - 9,1 ) , ( - 3,1 )
E)center: (6,1)( - 6,1 ) vertices: (6,3),(6,3)( - 6,3 ) , ( - 6 , - 3 )
Question
Sketch the graph of the equation. x225y24=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the vertices and center of the ellipse. x2+36y28x72y+16=0x ^ { 2 } + 36 y ^ { 2 } - 8 x - 72 y + 16 = 0

A)vertices: (5,1),(13,1)( - 5 , - 1 ) , ( 13 , - 1 ) center: (-4,-1)
B)vertices: (3,1),(5,1)( 3,1 ) , ( 5,1 ) center: (4,1)
C)vertices: (4,7),(4,5)( - 4 , - 7 ) , ( - 4,5 ) center: (4,1)( - 4 , - 1 )
D)vertices: (2,1),(10,1)( - 2,1 ) , ( 10,1 ) center: (4,1)( 4,1 )
E)vertices: (4,2),(4,4)( - 4 , - 2 ) , ( - 4,4 ) center: (4,1)( - 4 , - 1 )
Question
Identify the vertices and center of the ellipse. 25x2+16y2100x+96y156=025 x ^ { 2 } + 16 y ^ { 2 } - 100 x + 96 y - 156 = 0

A)vertices: (2,2),(2,8)( - 2 , - 2 ) , ( - 2,8 ) center: (-2,3)
B)vertices: (2,2),(2,8)( 2 , - 2 ) , ( 2,8 ) center: (2,3)
C)vertices: (2,8),(2,2)( 2 , - 8 ) , ( 2,2 ) center: (2,-3)
D)vertices: (2,5),(2,5)( - 2 , - 5 ) , ( - 2,5 ) center: (-2,-3)
E)vertices: (2,5),(2,5)( - 2 , - 5 ) , ( - 2,5 ) center: (-2,3)
Question
Solve the system by the method of substitution. {x=y+103x+2y=20\left\{ \begin{aligned}x & = \sqrt { y + 10 } \\3 x + 2 y & = - 20\end{aligned} \right.

A) (0,10)(32,314)( 0 , - 10 ) \left( - \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
B) (32,314)\left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
C) (0,10)( 0 , - 10 )
D) (0,10)(32,314)( 0,10 ) \left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
E)no solution exist
Question
Write the standard form of the equation of the hyperbola.  <strong>Write the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y + 3 ) ^ { 2 } } { 9 } - \frac { ( x + 2 ) ^ { 2 } } { 36 } = 1  B)  \frac { ( x - 2 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( y + 3 ) ^ { 2 } } { 36 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( y - 3 ) ^ { 2 } } { 36 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1  E)  \frac { ( x + 2 ) ^ { 2 } } { 36 } - \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) (y+3)29(x+2)236=1\frac { ( y + 3 ) ^ { 2 } } { 9 } - \frac { ( x + 2 ) ^ { 2 } } { 36 } = 1
B) (x2)236(y3)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 9 } = 1
C) (y+3)236(x+2)29=1\frac { ( y + 3 ) ^ { 2 } } { 36 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
D) (y3)236(x2)29=1\frac { ( y - 3 ) ^ { 2 } } { 36 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
E) (x+2)236(y+3)29=1\frac { ( x + 2 ) ^ { 2 } } { 36 } - \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1
Question
Sketch the graph of the equation.
 <strong>Sketch the graph of the equation.  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1  D)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1  E)  \frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1  <div style=padding-top: 35px>

A) y236x23=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1
B) x236y29=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1
C) x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1
D) y236x29=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1
E) x23y236=1\frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1
Question
Use a graphing calculator to graph the equations {x4y=1x1=y\left\{ \begin{array} { c } x - 4 y = 1 \\\sqrt { x } - 1 = y\end{array} \right. and find the solutions of the system.

A) (0,1);(2,9)( 0,1 ) ; ( 2,9 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )    <div style=padding-top: 35px>
B) (1,0);(4,1)( 1,0 ) ; ( 4,1 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )    <div style=padding-top: 35px>
C) (4,0);(16,2)( 4,0 ) ; ( 16,2 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )    <div style=padding-top: 35px>
D) (1,0);(9,2)( 1,0 ) ; ( 9,2 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )    <div style=padding-top: 35px>
E) (0,4);(2,16)( 0,4 ) ; ( 2,16 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )    <div style=padding-top: 35px>
Question
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {x2+y2=16xy=4\left\{ \begin{array} { r } x ^ { 2 } + y ^ { 2 } = 16 \\x - y = - 4\end{array} \right.

A) (0,4),(4,0)( 0 , - 4 ) , ( - 4,0 )
B) (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C) (0,4),(4,0)( 0,4 ) , ( 4,0 )
D) (0,4),(4,0)( 0,4 ) , ( - 4,0 )
E)no solution exists
Question
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {2x+y=12x2+y2=36\left\{ \begin{array} { r } 2 x + y = 12 \\x ^ { 2 } + y ^ { 2 } = 36\end{array} \right.

A) (6,0)(185,245)( 6,0 ) \left( - \frac { 18 } { 5 } , - \frac { 24 } { 5 } \right)
B) (6,0)(185,245)( - 6,0 ) \left( \frac { 18 } { 5 } , \frac { 24 } { 5 } \right)
C) (6,0)(185,245)( 6,0 ) \left( \frac { 18 } { 5 } , \frac { 24 } { 5 } \right)
D) (6,0)(185,245)( - 6,0 ) \left( - \frac { 18 } { 5 } , - \frac { 24 } { 5 } \right)
E)no solution exists
Question
Sketch the graph of the equation.
 <strong>Sketch the graph of the equation.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1  B)  \frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1  E)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1
B) x23y236=1\frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1
C) x236y29=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1
D) y236x23=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1
E) y236x29=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1
Question
Solve the system by the method of substitution. {y=2x2y=38x180\left\{ \begin{array} { l } y = 2 x ^ { 2 } \\y = 38 x - 180\end{array} \right.

A) (1,2),(1,2)( - 1,2 ) , ( 1,2 )
B) (9,162),(10,200)( 9,162 ) , ( 10,200 )
C) (9,162),(10,200)( - 9,162 ) , ( - 10,200 )
D) (1,2)( 1,2 )
E)no solution exists
Question
Solve the system by the method of substitution. {x2+y2=256x+y=5\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\- 6 x + y = 5\end{array} \right.

A) (0,25),(30,175)( 0,25 ) , ( - 30 , - 175 )
B) (0,5),(30,185)( 0,5 ) , ( 30,185 )
C) (0,5),(6037,17537)( 0,5 ) , \left( - \frac { 60 } { 37 } , - \frac { 175 } { 37 } \right)
D) (0,25),(6037,17537)( 0,25 ) , \left( - \frac { 60 } { 37 } , - \frac { 175 } { 37 } \right)
E)no solution exists
Question
Identify the center and vertices of the hyperbola. (x2)225(y+6)21=1\frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y + 6 ) ^ { 2 } } { 1 } = 1

A)center: (2,-6) vertices: (3,6),(7,6)( - 3 , - 6 ) , ( 7 , - 6 )
B)center: (2,-6) vertices: (2,7),(2,5)( 2 , - 7 ) , ( 2 , - 5 )
C)center: (-2,6) vertices: (2,1),(2,11)( - 2,1 ) , ( - 2,11 )
D)center: (2,-6) vertices: (2,11),(2,1)( 2 , - 11 ) , ( 2 , - 1 )
E)center: (2,6)( - 2,6 ) vertices: (2,5),(2,7)( - 2,5 ) , ( - 2,7 )
Question
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {9x24y2=368x2y=0\left\{ \begin{array} { c } 9 x ^ { 2 } - 4 y ^ { 2 } = 36 \\8 x - 2 y = 0\end{array} \right.

A) (23,32),(23,32)( 2 \sqrt { 3 } , 3 \sqrt { 2 } ) , ( - 2 \sqrt { 3 } , - 3 \sqrt { 2 } )
B) (2,8)(2,8)( 2,8 ) ( - 2 , - 8 )
C) (23,32)( 2 \sqrt { 3 } , 3 \sqrt { 2 } )
D) (2,8)( 2,8 )
E)no solution exists
Question
Identify the center and vertices of the hyperbola. x24y2+40y104=0x ^ { 2 } - 4 y ^ { 2 } + 40 y - 104 = 0

A)center: (0,5) vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )
B)center: (0,-5) vertices: (2,5),(2,5)( - 2 , - 5 ) , ( 2 , - 5 )
C)center: (0,5)( 0,5 ) vertices: (2,5),(2,5)( - 2,5 ) , ( 2,5 )
D)center: (0,5)( 0 , - 5 ) vertices: (6,5),(6,5)( - 6 , - 5 ) , ( 6 , - 5 )
E)center: (0,5)( 0 , - 5 ) vertices: (0,8),(0,2)( 0 , - 8 ) , ( 0 , - 2 )
Question
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {xy2=0xy=10\left\{ \begin{array} { l } x - y ^ { 2 } = 0 \\x - y = - 10\end{array} \right.

A) (100,10)( 100,10 )
B) (0,10)( 0 , - 10 )
C) (10,0)( 10,0 )
D) (19+412,1+412),(19412,1412)\left( \frac { 19 + \sqrt { 41 } } { 2 } , \frac { - 1 + \sqrt { 41 } } { 2 } \right) , \left( \frac { 19 - \sqrt { 41 } } { 2 } , \frac { - 1 - \sqrt { 41 } } { 2 } \right)
E)no solution exists
Question
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {3xy=21x2y2=49\left\{ \begin{array} { r } 3 x - y = 21 \\x ^ { 2 } - y ^ { 2 } = 49\end{array} \right.

A) (7,0)(285,215)( - 7,0 ) \left( \frac { 28 } { 5 } , \frac { 21 } { 5 } \right)
B) (7,0)(354,214)( 7,0 ) \left( \frac { 35 } { 4 } , \frac { 21 } { 4 } \right)
C) (0,7)(28,7)( 0 , - 7 ) ( 28,7 )
D) (0,7)(7,42)( 0,7 ) ( - 7,42 )
E)no solution exists
Question
Write the standard form of the equation of the hyperbola.  <strong>Write the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( x + 3 ) ^ { 2 } } { 4 } - \frac { ( y - 3 ) ^ { 2 } } { 16 / 5 } = 1  B)  \frac { ( y - 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x + 3 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( y - 3 ) ^ { 2 } } { 4 } - \frac { ( x + 3 ) ^ { 2 } } { 5 / 16 } = 1  D)  \frac { ( y + 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x - 3 ) ^ { 2 } } { 4 } = 1  E)  \frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y + 3 ) ^ { 2 } } { 16 / 5 } = 1  <div style=padding-top: 35px>

A) (x+3)24(y3)216/5=1\frac { ( x + 3 ) ^ { 2 } } { 4 } - \frac { ( y - 3 ) ^ { 2 } } { 16 / 5 } = 1
B) (y3)25/16(x+3)24=1\frac { ( y - 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x + 3 ) ^ { 2 } } { 4 } = 1
C) (y3)24(x+3)25/16=1\frac { ( y - 3 ) ^ { 2 } } { 4 } - \frac { ( x + 3 ) ^ { 2 } } { 5 / 16 } = 1
D) (y+3)25/16(x3)24=1\frac { ( y + 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x - 3 ) ^ { 2 } } { 4 } = 1
E) (x3)24(y+3)216/5=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y + 3 ) ^ { 2 } } { 16 / 5 } = 1
Question
Solve the system by the method of substitution. {x2+y=1x+y=15\left\{ \begin{array} { l } x ^ { 2 } + y = 1 \\x + y = - 15\end{array} \right.

A) (1652,31652),(1+652,31+652)\left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right)
B) (1652,31+652),(1+652,31652)\left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right)
C) (1+592,29+652),(1+592,29652)\left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
D) (1592,29+652),(1592,29652)\left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
E)no solution exists
Question
Solve the system by the method of substitution. {x2y=68xy=6\left\{ \begin{array} { l } x ^ { 2 } - y = - 6 \\8 x - y = 6\end{array} \right.

A) (2,42)( 2,42 )
B) (6,30)( 6,30 )
C) (6,30),(2,42)( 6,30 ) , ( 2,42 )
D) (6,42),(2,10)( 6,42 ) , ( 2,10 )
E)no solution exists
Question
Solve the system by the method of substitution. {y=x227x+2y=4\left\{ \begin{aligned}y & = x ^ { 2 } - 2 \\7 x + 2 y & = - 4\end{aligned} \right.

A) (0,2)(72,414)( 0 , - 2 ) \left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
B) (0,2)(72,414)( 0 , - 2 ) \left( \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
C) (72,414)\left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
D) (0,2)(72,414)( 0,2 ) \left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
E)no solution exists
Question
Identify the center and vertices of the hyperbola. x216y210x96y135=0x ^ { 2 } - 16 y ^ { 2 } - 10 x - 96 y - 135 = 0

A)center: (5,-3) vertices: (1,3),(9,3)( 1 , - 3 ) , ( 9 , - 3 )
B)center: (-5,3) vertices: (5,2),(5,4)( - 5,2 ) , ( - 5,4 )
C)center: (10,10)( - 10,10 ) vertices: (10,2),(10,10)( - 10,2 ) , ( - 10,10 )
D)center: (5,3)( 5 , - 3 ) vertices: (5,4),(5,2)( 5 , - 4 ) , ( 5 , - 2 )
E)center: (10,10)( 10 , - 10 ) vertices: (10,24),(10,24)( 10,24 ) , ( 10 , - 24 )
Question
Solve the system by the method of substitution. {xy2=0xy=42\left\{ \begin{array} { l } x - y ^ { 2 } = 0 \\x - y = 42\end{array} \right.

A) (36,6),(25,5)( 36,6 ) , ( 25 , - 5 )
B) (36,6),(25,5)( 36 , - 6 ) , ( 25,5 )
C) (36,6),(49,7)( 36,6 ) , ( 49 , - 7 )
D) (36,6),(49,7)( 36 , - 6 ) , ( 49,7 )
E)no solution exists
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/89
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Conics
1
Write the standard form of the equation of the parabola with focus (4,5) and its vertex at (9,5).

A) (x9)2=20(y5)( x - 9 ) ^ { 2 } = 20 ( y - 5 )
B) (y5)2=20(x9)( y - 5 ) ^ { 2 } = 20 ( x - 9 )
C) (x9)2=20(y5)( x - 9 ) ^ { 2 } = - 20 ( y - 5 )
D) (x+9)2=20(y+5)( x + 9 ) ^ { 2 } = 20 ( y + 5 )
E) (y5)2=20(x9)( y - 5 ) ^ { 2 } = - 20 ( x - 9 )
(y5)2=20(x9)( y - 5 ) ^ { 2 } = - 20 ( x - 9 )
2
Write the standard form of the equation of the circle with the center at (0,0) that has a radius of 6.

A) y2=6x2y ^ { 2 } = 6 x ^ { 2 }
B) y2=36x2y ^ { 2 } = 36 x ^ { 2 }
C) x2+y2=6x ^ { 2 } + y ^ { 2 } = 6
D) x2+y2=36x ^ { 2 } + y ^ { 2 } = 36
E) y=6x2y = 6 x ^ { 2 }
x2+y2=36x ^ { 2 } + y ^ { 2 } = 36
3
Write the standard form of the equation of the circle with the center at (4,2) that has radius 4.

A) (x4)2+(y2)2=4( x - 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 4
B) (x+4)2+(y+2)2=16( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 16
C) (x+4)2+(y+2)2=4( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 4
D) (x4)2+(y2)2=16( x - 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 16
E) (x+4)2+(y2)2=4( x + 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 4
(x4)2+(y2)2=16( x - 4 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 16
4
Graph the equation 4x2+4y2=644 x ^ { 2 } + 4 y ^ { 2 } = 64 .

A)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  4 x ^ { 2 } + 4 y ^ { 2 } = 64 .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
5
Graph the equation (x+1)2+(y+4)2=16( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16 .

A)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  ( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 16  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
6
Graph the equation (x+2)2=3(y1)( x + 2 ) ^ { 2 } = - 3 ( y - 1 ) .

A)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  ( x + 2 ) ^ { 2 } = - 3 ( y - 1 )  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
7
Write the standard form of the equation of the circle with the center at (0,0) that passes through the point (6,2) .

A) x2+y2=8x ^ { 2 } + y ^ { 2 } = 8
B) x2+y2=40x ^ { 2 } + y ^ { 2 } = 40
C) 4y2=36x24 y ^ { 2 } = 36 x ^ { 2 }
D) 36y2=4x236 y ^ { 2 } = 4 x ^ { 2 }
E) (x6)2+(y2)2=40( x - 6 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 40
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
8
Identify the center and radius of the circle x212x+y26y36=0x ^ { 2 } - 12 x + y ^ { 2 } - 6 y - 36 = 0 .

A)center: (12,6) radius: 216
B)center: (-6,-3) radius: 9
C)center: (6,3) radius: 36
D)center: (6,3) radius: 9
E)center: (12,6) radius: 36
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
9
Graph the equation x2=5yx ^ { 2 } = - 5 y .

A)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  x ^ { 2 } = - 5 y  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
10
Identify the center and radius of the circle x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 .

A)center: (1,1) radius: 25
B)center: (5,5) radius: 5
C)center: (0,0) radius: 5
D)center: (5,5) radius: 1
E)center: (0,0) radius: 25
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
11
Identify the center and radius of the circle (x2)2+(y7)2=81( x - 2 ) ^ { 2 } + ( y - 7 ) ^ { 2 } = 81 .

A)center: (-7,-2) radius: 9
B)center: (2,7) radius: 9
C)center: (2,7) radius: 81
D)center: (-2,-7) radius: 9
E)center: (7,2) radius: 81
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
12
Graph the equation (y1)2=5(x2)( y - 1 ) ^ { 2 } = 5 ( x - 2 ) .

A)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  ( y - 1 ) ^ { 2 } = 5 ( x - 2 )  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
13
Write the standard form of the equation of the circle with the center at (0,2) that passes through the point (7,3) .

A) x2+(y+2)2=50x ^ { 2 } + ( y + 2 ) ^ { 2 } = 50
B) x2+(y2)2=58x ^ { 2 } + ( y - 2 ) ^ { 2 } = 58
C) x2+(y2)2=50x ^ { 2 } + ( y - 2 ) ^ { 2 } = 50
D) (x2)2+y2=58( x - 2 ) ^ { 2 } + y ^ { 2 } = 58
E) (x+2)2+y2=50( x + 2 ) ^ { 2 } + y ^ { 2 } = 50
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
14
Graph the equation y2=6xy ^ { 2 } = - 6 x .

A)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the equation  y ^ { 2 } = - 6 x  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
15
Identify the center and radius of the circle 9x2+9y216=09 x ^ { 2 } + 9 y ^ { 2 } - 16 = 0 .

A)center: (3,3) radius: 4
B)center: (0,0) radius: 43 \frac{4}{3}
C)center: (0,0) radius: 34\frac { 3 } { 4 }
D)center: (0,4) radius: 13\frac { 1 } { 3 }
E)center: (0,4) radius: 19\frac { 1 } { 9 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
16
Identify the center and radius of the circle x2+18x+y2+16y+45=0x ^ { 2 } + 18 x + y ^ { 2 } + 16 y + 45 = 0 .

A)center: (18,16)( 18,16 ) radius: 535
B)center: (9,8)( - 9 , - 8 ) radius: 45
C)center: (9,8)( 9,8 ) radius: 10
D)center: (18,16)( - 18 , - 16 ) radius: 45
E)center: (9,8)( - 9 , - 8 ) radius: 10
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
17
Identify the center and radius of the circle 4x2+4y2=14 x ^ { 2 } + 4 y ^ { 2 } = 1 .

A)center: (0,0) radius: 14\frac { 1 } { 4 }
B)center: (1,1) radius: 4
C)center: (1,1) radius: 2
D)center: (2,2) radius: 1
E)center: (0,0) radius: 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
18
Write the standard form of the equation of the parabola with focus (0,-2) and its vertex at the origin.

A) y2=8yy ^ { 2 } = 8 y
B) x2=8xx ^ { 2 } = 8 x
C) y2=8xy ^ { 2 } = - 8 x
D) x2=8yx ^ { 2 } = - 8 y
E) x2=18yx ^ { 2 } = \frac { 1 } { 8 } y
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
19
Write the standard form of the equation of the parabola with focus (-9,0) and its vertex at the origin.

A) x2=136yx ^ { 2 } = \frac { 1 } { 36 } y
B) y2=36yy ^ { 2 } = 36 y
C) x2=36xx ^ { 2 } = 36 x
D) x2=36yx ^ { 2 } = - 36 y
E) y2=36xy ^ { 2 } = - 36 x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
20
Write the standard form of the equation of the parabola with focus (-5,5) and its vertex at (-5,8) .

A) (y8)2=3(x+5)( y - 8 ) ^ { 2 } = - 3 ( x + 5 )
B) (y8)2=12(x+5)( y - 8 ) ^ { 2 } = 12 ( x + 5 )
C) (x+5)2=12(y8)( x + 5 ) ^ { 2 } = - 12 ( y - 8 )
D) (x+5)2=3(y8)( x + 5 ) ^ { 2 } = - 3 ( y - 8 )
E) (y8)2=12(x+5)( y - 8 ) ^ { 2 } = - 12 ( x + 5 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
21
Write the standard form of the equation of the ellipse centered at the origin. Vertices: (6,0)(6,0)( - 6,0 ) ( 6,0 ) Co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) x26=y24\frac { x ^ { 2 } } { 6 } = \frac { y ^ { 2 } } { 4 }
B) 36x2+16y2=136 x ^ { 2 } + 16 y ^ { 2 } = 1
C) x24+y26=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 6 } = 1
D) x216+y236=0\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 0
E) x236+y216=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
22
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { x ^ { 2 } } { 4 } + \frac { 7 y ^ { 2 } } { 2 } = 1  B)  4 x ^ { 2 } + 784 y ^ { 2 } = 64  C)  \frac { x ^ { 2 } } { 16 } + \frac { 49 y ^ { 2 } } { 4 } = 1  D)  \frac { x ^ { 2 } } { 4 } + \frac { 2 y ^ { 2 } } { 7 } = 1  E)  \frac { x ^ { 2 } } { 16 } + \frac { 4 y ^ { 2 } } { 49 } = 1

A) x24+7y22=1\frac { x ^ { 2 } } { 4 } + \frac { 7 y ^ { 2 } } { 2 } = 1
B) 4x2+784y2=644 x ^ { 2 } + 784 y ^ { 2 } = 64
C) x216+49y24=1\frac { x ^ { 2 } } { 16 } + \frac { 49 y ^ { 2 } } { 4 } = 1
D) x24+2y27=1\frac { x ^ { 2 } } { 4 } + \frac { 2 y ^ { 2 } } { 7 } = 1
E) x216+4y249=1\frac { x ^ { 2 } } { 16 } + \frac { 4 y ^ { 2 } } { 49 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
23
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { ( x - 4 ) ^ { 2 } } { 2 } + \frac { ( y - 4 ) ^ { 2 } } { 3 } = 1  B)  \frac { ( x - 4 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 9 } = 1  D)  \frac { x ^ { 2 } + 4 } { 4 } + \frac { y ^ { 2 } + 4 } { 9 } = 1  E)  \frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 6 } = 1

A) (x4)22+(y4)23=1\frac { ( x - 4 ) ^ { 2 } } { 2 } + \frac { ( y - 4 ) ^ { 2 } } { 3 } = 1
B) (x4)24+(y4)29=1\frac { ( x - 4 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 9 } = 1
C) (x+4)24+(y+4)29=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 9 } = 1
D) x2+44+y2+49=1\frac { x ^ { 2 } + 4 } { 4 } + \frac { y ^ { 2 } + 4 } { 9 } = 1
E) (x+4)24+(y+4)26=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 6 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
24
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } + 2 } { 9 } + \frac { y ^ { 2 } } { 16 } = 1  D)  \frac { ( x - 2 ) ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 8 } = 1  E)  \frac { ( x + 2 ) ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 4 } = 1

A) (x+2)29+y216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) (x2)29+y216=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
C) x2+29+y216=1\frac { x ^ { 2 } + 2 } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) (x2)26+y28=1\frac { ( x - 2 ) ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 8 } = 1
E) (x+2)23+y24=1\frac { ( x + 2 ) ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
25
Identify the vertices and co-vertices of the ellipse 9x2+49y24=09 x ^ { 2 } + 49 y ^ { 2 } - 4 = 0 .

A)vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) co-vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )
B)vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 ) co-vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 )
C)vertices: (32,0),(32,0)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) co-vertices: (0,72),(0,72)\left( 0 , - \frac { 7 } { 2 } \right) , \left( 0 , \frac { 7 } { 2 } \right)
D)vertices: (23,0),(23,0)\left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) co-vertices: (0,27),(0,27)\left( 0 , - \frac { 2 } { 7 } \right) , \left( 0 , \frac { 2 } { 7 } \right)
E)vertices: (0,27),(0,27)\left( 0 , - \frac { 2 } { 7 } \right) , \left( 0 , \frac { 2 } { 7 } \right) co-vertices: (32,0),(32,0)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
26
Identify the vertex and focus of the parabola x218x+24y+249=0x ^ { 2 } - 18 x + 24 y + 249 = 0 .

A)vertex: (9,7)( 9 , - 7 ) focus: (105,7)( 105 , - 7 )
B)vertex: (9,7)( - 9,7 ) focus: (105,7)( - 105,7 )
C)vertex: (9,7)( 9 , - 7 ) focus: (105,7)( - 105 , - 7 )
D)vertex: (9,7)( 9 , - 7 ) focus: (9,13)( 9 , - 13 )
E)vertex: (9,7)( - 9,7 ) focus: (9,13)( - 9 , - 13 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
27
Identify the vertex and focus of the parabola y2=7xy ^ { 2 } = - 7 x .

A)vertex: (0,0) focus: (74,0)\left( - \frac { 7 } { 4 } , 0 \right)
B)vertex: (0,0) focus: (17,0)\left( - \frac { 1 } { 7 } , 0 \right)
C)vertex: (0,0) focus: (-7,0)
D)vertex: (0,0) focus: (0,74)\left( 0 , \frac { 7 } { 4 } \right)
E)vertex: (0,0) focus: (0,17)\left( 0 , \frac { 1 } { 7 } \right)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
28
Graph the function (x2)29+(y+1)21=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1 .

A)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 1 } = 1  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
29
Graph the function x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1 .

A)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
30
Identify the vertices and center of the ellipse (x5)29+(y2)249=1\frac { ( x - 5 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 49 } = 1 .

A)vertices: (5,7),(5,7)( 5 , - 7 ) , ( 5,7 ) center: (5,2)
B)vertices: (3,2),(3,2)( 3,2 ) , ( 3,2 ) center: (5,2)
C)vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) center: (-5,-2)
D)vertices: (5,1),(5,5)( - 5 , - 1 ) , ( 5,5 ) center: (-5,-2)
E)vertices: (5,5),(5,9)( 5 , - 5 ) , ( 5,9 ) center: (5,2)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
31
Write the standard form of the equation of the ellipse.  <strong>Write the standard form of the equation of the ellipse.  </strong> A)  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  B)  \frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 5 } = 1  C)  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1  D)  25 x ^ { 2 } + 9 y ^ { 2 } = 1  E)  \frac { 9 x ^ { 2 } } { 25 } + \frac { 25 y ^ { 2 } } { 9 } = 1

A) x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1
B) x23+y25=1\frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 5 } = 1
C) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
D) 25x2+9y2=125 x ^ { 2 } + 9 y ^ { 2 } = 1
E) 9x225+25y29=1\frac { 9 x ^ { 2 } } { 25 } + \frac { 25 y ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
32
Identify the vertex and focus of the parabola (x10)2+36(y+6)=0( x - 10 ) ^ { 2 } + 36 ( y + 6 ) = 0 .

A)vertex: (10,6)( 10 , - 6 ) focus: (154,6)( - 154 , - 6 )
B)vertex: (10,6)( 10 , - 6 ) focus: (10,15)( 10 , - 15 )
C)vertex: (10,6)( 10 , - 6 ) focus: (154,6)( 154 , - 6 )
D)vertex: (10,6)( - 10,6 ) focus: (10,15)( - 10 , - 15 )
E)vertex: (10,6)( - 10,6 ) focus: (154,6)( - 154,6 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
33
A semicircular arch for a tunnel under a river has a diameter of 80 feet (see figure). Determine the height of the arch 4 feet from the edge of the tunnel.  <strong>A semicircular arch for a tunnel under a river has a diameter of 80 feet (see figure). Determine the height of the arch 4 feet from the edge of the tunnel.  </strong> A)36 feet B)  12 \sqrt { 11 }  feet C)  4 \sqrt { 19 }  feet D)  4 \sqrt { 399 }  feet E)  6  feet

A)36 feet
B) 121112 \sqrt { 11 } feet
C) 4194 \sqrt { 19 } feet
D) 43994 \sqrt { 399 } feet
E) 66 feet
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
34
Identify the vertex and focus of the parabola y=16x2y = \frac { 1 } { 6 } x ^ { 2 } .

A)vertex: (0,0) focus: (32,0)\left( \frac { 3 } { 2 } , 0 \right)
B)vertex: (0,0) focus: (0,23)\left( 0 , \frac { 2 } { 3 } \right)
C)vertex: (0,0) focus: (0,32)\left( 0 , \frac { 3 } { 2 } \right)
D)vertex: (0,0) focus: (0,124)\left( 0 , \frac { 1 } { 24 } \right)
E)vertex: (0,0) focus: (23,0)\left( \frac { 2 } { 3 } , 0 \right)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
35
Write the standard form of the equation of the ellipse centered at the origin, having a horizontal major axis of 6 units and a minor axis of 4 units.

A) x26+y24=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 4 } = 1
B) x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1
C) x216+y236=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 1
D) x28+y218=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 18 } = 1
E) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
36
Identify the vertices and co-vertices of the ellipse 25x2+16y29=025 x ^ { 2 } + 16 y ^ { 2 } - 9 = 0 .

A)vertices: (0,34),(0,34)\left( 0 , - \frac { 3 } { 4 } \right) , \left( 0 , \frac { 3 } { 4 } \right) co-vertices: (35,0),(35,0)\left( - \frac { 3 } { 5 } , 0 \right) , \left( \frac { 3 } { 5 } , 0 \right)
B)vertices: (53,0),(53,0)\left( - \frac { 5 } { 3 } , 0 \right) , \left( \frac { 5 } { 3 } , 0 \right) co-vertices: (0,43),(0,43)\left( 0 , - \frac { 4 } { 3 } \right) , \left( 0 , \frac { 4 } { 3 } \right)
C)vertices: (0,43),(0,43)\left( 0 , - \frac { 4 } { 3 } \right) , \left( 0 , \frac { 4 } { 3 } \right) co-vertices: (53,0),(53,0)\left( - \frac { 5 } { 3 } , 0 \right) , \left( \frac { 5 } { 3 } , 0 \right)
D)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
E)vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 ) co-vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
37
Identify the vertices and co-vertices of the ellipse x249+y24=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1 .

A)vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) co-vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
B)vertices: (49,0),(49,0)( - 49,0 ) , ( 49,0 ) co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C)vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) co-vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )
D)vertices: (0,49),(0,49)( 0 , - 49 ) , ( 0,49 ) co-vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
E)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) co-vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
38
Write the standard form of the equation of the ellipse centered at the origin, having a vertical 20 units and a minor axis of 10 units.

A) x225+y2100=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 100 } = 1
B) x2100+y225=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 25 } = 1
C) x250+y2200=1\frac { x ^ { 2 } } { 50 } + \frac { y ^ { 2 } } { 200 } = 1
D) x220+y210=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 10 } = 1
E) x2100+y2400=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 400 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
39
Graph the function x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 .

A)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
40
Graph the function (x+2)24+(y+2)29=1\frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1 .

A)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function  \frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
41
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 ) Asymptotes: y=14x,y=14xy = \frac { 1 } { 4 } x , y = - \frac { 1 } { 4 } x

A) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
B) y29x29/16=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 9 / 16 } = 1
C) (0,10)(32,314)( 0,10 ) \left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
D) y29x2144=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 144 } = 1
E) x29y2144=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 144 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
42
Identify the vertices and asymptotes of the hyperbola. x2y2=36x ^ { 2 } - y ^ { 2 } = 36

A)vertices: (6,6),(6,6)( 6 , - 6 ) , ( 6,6 ) asymptotes: y=6x,y=x6y = - 6 x , y = \frac { x } { 6 }
B)vertices: (36,0),(36,0)( - 36,0 ) , ( 36,0 ) asymptotes: y=x,y=xy = - x , y = x
C)vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) asymptotes: y=6x,y=x6y = - 6 x , y = \frac { x } { 6 }
D)vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 ) asymptotes: y=x,y=xy = - x , y = x
E)vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) asymptotes: y=x,y=xy = - x , y = x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
43
Identify the vertices and asymptotes of the hyperbola. x225y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1

A)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
B)vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) asymptotes: y=95x,y=95xy = - \frac { 9 } { 5 } x , y = \frac { 9 } { 5 } x
C)vertices: (0,9),(0,9)( 0 , - 9 ) , ( 0,9 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
D)vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) asymptotes: y=95x,y=95xy = - \frac { 9 } { 5 } x , y = \frac { 9 } { 5 } x
E)vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 ) asymptotes: y=59x,y=59xy = - \frac { 5 } { 9 } x , y = \frac { 5 } { 9 } x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
44
Graph the hyperbola. y29x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1

A)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
45
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) Asymptotes: y=5x,y=5xy = 5 x , y = - 5 x

A) x24y24/25=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 4 / 25 } = 1
B) x24y2100=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 100 } = 1
C) x24/25y24=1\frac { x ^ { 2 } } { 4 / 25 } - \frac { y ^ { 2 } } { 4 } = 1
D) y2100x24=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 4 } = 1
E) x225y24=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
46
Identify the vertices and asymptotes of the hyperbola. y2x2=4y ^ { 2 } - x ^ { 2 } = 4

A)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) asymptotes: y=x,y=xy = - x , y = x
B)vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 ) asymptotes: y=x,y=xy = - x , y = x
C)vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) asymptotes: y=x,y=xy = - x , y = x
D)vertices: (2,2),(2,2)( - 2,2 ) , ( 2,2 ) asymptotes: y=2x,y=x2y = - 2 x , y = \frac { x } { 2 }
E)vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) asymptotes: y=2x,y=x2y = - 2 x , y = \frac { x } { 2 }
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
47
Graph the hyperbola. x2y2=16x ^ { 2 } - y ^ { 2 } = 16

A)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the hyperbola.  x ^ { 2 } - y ^ { 2 } = 16 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
48
Identify the vertices and asymptotes of the hyperbola. y249x2100=1\frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 100 } = 1

A)vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
B)vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 ) asymptotes: y=107x,y=107xy = - \frac { 10 } { 7 } x , y = \frac { 10 } { 7 } x
C)vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
D)vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 ) asymptotes: y=710x,y=710xy = - \frac { 7 } { 10 } x , y = \frac { 7 } { 10 } x
E)vertices: (7,0),(7,0)( - 7,0 ) , ( 7,0 ) asymptotes: y=107x,y=107xy = - \frac { 10 } { 7 } x , y = \frac { 10 } { 7 } x
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
49
Identify the vertices and center of the ellipse. 36x2+25y2+72x200y464=036 x ^ { 2 } + 25 y ^ { 2 } + 72 x - 200 y - 464 = 0

A)vertices: (6,4),(4,4)( - 6,4 ) , ( 4,4 ) center: (-1,4)
B)vertices: (1,2),(1,10)( - 1 , - 2 ) , ( - 1,10 ) center: (-1,4)
C)vertices: (7,4),(5,4)( - 7,4 ) , ( 5,4 ) center: (-1,4)
D)vertices: (1,1),(1,9)( 1 , - 1 ) , ( - 1,9 ) center: (1,-4)
E)vertices: (1,10),(1,2)( 1 , - 10 ) , ( - 1,2 ) center: (1,-4)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
50
Graph the hyperbola. x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1

A)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the hyperbola.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
51
A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet from the edge of the tunnel. Round your answer to one decimal place. <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet

A) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet
B) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet
C) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet
D) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet
E) <strong>A semielliptical arch for a tunnel under a river has a width of 80 feet and a height of 30 feet (see figure). Determine the height of the arch   feet from the edge of the tunnel. Round your answer to one decimal place.  </strong> A)   feet B)   feet C)   feet D)   feet E)   feet feet
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
52
Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 ) Asymptotes: y=4x,y=4xy = 4 x , y = - 4 x

A) y24x21/4=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 1 / 4 } = 1
B) x24y264=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 64 } = 1
C) y24x264=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 64 } = 1
D) x264y24=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 4 } = 1
E) y21/4x24=1\frac { y ^ { 2 } } { 1 / 4 } - \frac { x ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
53
Graph the hyperbola. y2x2=36y ^ { 2 } - x ^ { 2 } = 36

A)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the hyperbola.  y ^ { 2 } - x ^ { 2 } = 36 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
54
Identify the vertices and center of the ellipse. 25(x2)2+9(y+6)2=425 ( x - 2 ) ^ { 2 } + 9 ( y + 6 ) ^ { 2 } = 4

A)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , \frac { 16 } { 3 } \right) center: (2,-6)
B)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (2,-6)
C)vertices: (2,203),(2,163)\left( 2 , \frac { 20 } { 3 } \right) , \left( 2 , \frac { 16 } { 3 } \right) center: (-2,6)
D)vertices: (2,203),(2,163)\left( 2 , \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (2,-6)
E)vertices: (2,203),(2,163)\left( 2 , - \frac { 20 } { 3 } \right) , \left( 2 , - \frac { 16 } { 3 } \right) center: (-2,6)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
55
Sketch the graph of the equation. (x+2)225(y1)24=1\frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the equation.  \frac { ( x + 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
56
Sketch the graph of the equation. y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the equation.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
57
Identify the center and vertices of the hyperbola. (y1)2(x+6)2=9( y - 1 ) ^ { 2 } - ( x + 6 ) ^ { 2 } = 9

A)center: (6,1)( - 6,1 ) vertices: (6,2),(6,4)( - 6 , - 2 ) , ( - 6,4 )
B)center: (6,1)( 6 , - 1 ) vertices: (6,3),(6,3)( - 6,3 ) , ( - 6 , - 3 )
C)center: (6,1)( 6 , - 1 ) vertices: (3,1),(9,1)( 3 , - 1 ) , ( 9 , - 1 )
D)center: (6,1)( - 6,1 ) vertices: (9,1),(3,1)( - 9,1 ) , ( - 3,1 )
E)center: (6,1)( - 6,1 ) vertices: (6,3),(6,3)( - 6,3 ) , ( - 6 , - 3 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
58
Sketch the graph of the equation. x225y24=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1

A)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the equation.  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
59
Identify the vertices and center of the ellipse. x2+36y28x72y+16=0x ^ { 2 } + 36 y ^ { 2 } - 8 x - 72 y + 16 = 0

A)vertices: (5,1),(13,1)( - 5 , - 1 ) , ( 13 , - 1 ) center: (-4,-1)
B)vertices: (3,1),(5,1)( 3,1 ) , ( 5,1 ) center: (4,1)
C)vertices: (4,7),(4,5)( - 4 , - 7 ) , ( - 4,5 ) center: (4,1)( - 4 , - 1 )
D)vertices: (2,1),(10,1)( - 2,1 ) , ( 10,1 ) center: (4,1)( 4,1 )
E)vertices: (4,2),(4,4)( - 4 , - 2 ) , ( - 4,4 ) center: (4,1)( - 4 , - 1 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
60
Identify the vertices and center of the ellipse. 25x2+16y2100x+96y156=025 x ^ { 2 } + 16 y ^ { 2 } - 100 x + 96 y - 156 = 0

A)vertices: (2,2),(2,8)( - 2 , - 2 ) , ( - 2,8 ) center: (-2,3)
B)vertices: (2,2),(2,8)( 2 , - 2 ) , ( 2,8 ) center: (2,3)
C)vertices: (2,8),(2,2)( 2 , - 8 ) , ( 2,2 ) center: (2,-3)
D)vertices: (2,5),(2,5)( - 2 , - 5 ) , ( - 2,5 ) center: (-2,-3)
E)vertices: (2,5),(2,5)( - 2 , - 5 ) , ( - 2,5 ) center: (-2,3)
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
61
Solve the system by the method of substitution. {x=y+103x+2y=20\left\{ \begin{aligned}x & = \sqrt { y + 10 } \\3 x + 2 y & = - 20\end{aligned} \right.

A) (0,10)(32,314)( 0 , - 10 ) \left( - \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
B) (32,314)\left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
C) (0,10)( 0 , - 10 )
D) (0,10)(32,314)( 0,10 ) \left( \frac { 3 } { 2 } , - \frac { 31 } { 4 } \right)
E)no solution exist
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
62
Write the standard form of the equation of the hyperbola.  <strong>Write the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y + 3 ) ^ { 2 } } { 9 } - \frac { ( x + 2 ) ^ { 2 } } { 36 } = 1  B)  \frac { ( x - 2 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( y + 3 ) ^ { 2 } } { 36 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( y - 3 ) ^ { 2 } } { 36 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1  E)  \frac { ( x + 2 ) ^ { 2 } } { 36 } - \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1

A) (y+3)29(x+2)236=1\frac { ( y + 3 ) ^ { 2 } } { 9 } - \frac { ( x + 2 ) ^ { 2 } } { 36 } = 1
B) (x2)236(y3)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 9 } = 1
C) (y+3)236(x+2)29=1\frac { ( y + 3 ) ^ { 2 } } { 36 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
D) (y3)236(x2)29=1\frac { ( y - 3 ) ^ { 2 } } { 36 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
E) (x+2)236(y+3)29=1\frac { ( x + 2 ) ^ { 2 } } { 36 } - \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
63
Sketch the graph of the equation.
 <strong>Sketch the graph of the equation.  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1  D)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1  E)  \frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1

A) y236x23=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1
B) x236y29=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1
C) x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1
D) y236x29=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1
E) x23y236=1\frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
64
Use a graphing calculator to graph the equations {x4y=1x1=y\left\{ \begin{array} { c } x - 4 y = 1 \\\sqrt { x } - 1 = y\end{array} \right. and find the solutions of the system.

A) (0,1);(2,9)( 0,1 ) ; ( 2,9 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )
B) (1,0);(4,1)( 1,0 ) ; ( 4,1 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )
C) (4,0);(16,2)( 4,0 ) ; ( 16,2 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )
D) (1,0);(9,2)( 1,0 ) ; ( 9,2 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )
E) (0,4);(2,16)( 0,4 ) ; ( 2,16 )  <strong>Use a graphing calculator to graph the equations  \left\{ \begin{array} { c } x - 4 y = 1 \\ \sqrt { x } - 1 = y \end{array} \right.  and find the solutions of the system.</strong> A)  ( 0,1 ) ; ( 2,9 )    B)  ( 1,0 ) ; ( 4,1 )    C)  ( 4,0 ) ; ( 16,2 )    D)  ( 1,0 ) ; ( 9,2 )    E)  ( 0,4 ) ; ( 2,16 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
65
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {x2+y2=16xy=4\left\{ \begin{array} { r } x ^ { 2 } + y ^ { 2 } = 16 \\x - y = - 4\end{array} \right.

A) (0,4),(4,0)( 0 , - 4 ) , ( - 4,0 )
B) (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C) (0,4),(4,0)( 0,4 ) , ( 4,0 )
D) (0,4),(4,0)( 0,4 ) , ( - 4,0 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
66
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {2x+y=12x2+y2=36\left\{ \begin{array} { r } 2 x + y = 12 \\x ^ { 2 } + y ^ { 2 } = 36\end{array} \right.

A) (6,0)(185,245)( 6,0 ) \left( - \frac { 18 } { 5 } , - \frac { 24 } { 5 } \right)
B) (6,0)(185,245)( - 6,0 ) \left( \frac { 18 } { 5 } , \frac { 24 } { 5 } \right)
C) (6,0)(185,245)( 6,0 ) \left( \frac { 18 } { 5 } , \frac { 24 } { 5 } \right)
D) (6,0)(185,245)( - 6,0 ) \left( - \frac { 18 } { 5 } , - \frac { 24 } { 5 } \right)
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
67
Sketch the graph of the equation.
 <strong>Sketch the graph of the equation.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1  B)  \frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1  E)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1

A) x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1
B) x23y236=1\frac { x ^ { 2 } } { 3 } - \frac { y ^ { 2 } } { 36 } = 1
C) x236y29=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 9 } = 1
D) y236x23=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 3 } = 1
E) y236x29=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the system by the method of substitution. {y=2x2y=38x180\left\{ \begin{array} { l } y = 2 x ^ { 2 } \\y = 38 x - 180\end{array} \right.

A) (1,2),(1,2)( - 1,2 ) , ( 1,2 )
B) (9,162),(10,200)( 9,162 ) , ( 10,200 )
C) (9,162),(10,200)( - 9,162 ) , ( - 10,200 )
D) (1,2)( 1,2 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the system by the method of substitution. {x2+y2=256x+y=5\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\- 6 x + y = 5\end{array} \right.

A) (0,25),(30,175)( 0,25 ) , ( - 30 , - 175 )
B) (0,5),(30,185)( 0,5 ) , ( 30,185 )
C) (0,5),(6037,17537)( 0,5 ) , \left( - \frac { 60 } { 37 } , - \frac { 175 } { 37 } \right)
D) (0,25),(6037,17537)( 0,25 ) , \left( - \frac { 60 } { 37 } , - \frac { 175 } { 37 } \right)
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
70
Identify the center and vertices of the hyperbola. (x2)225(y+6)21=1\frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y + 6 ) ^ { 2 } } { 1 } = 1

A)center: (2,-6) vertices: (3,6),(7,6)( - 3 , - 6 ) , ( 7 , - 6 )
B)center: (2,-6) vertices: (2,7),(2,5)( 2 , - 7 ) , ( 2 , - 5 )
C)center: (-2,6) vertices: (2,1),(2,11)( - 2,1 ) , ( - 2,11 )
D)center: (2,-6) vertices: (2,11),(2,1)( 2 , - 11 ) , ( 2 , - 1 )
E)center: (2,6)( - 2,6 ) vertices: (2,5),(2,7)( - 2,5 ) , ( - 2,7 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
71
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {9x24y2=368x2y=0\left\{ \begin{array} { c } 9 x ^ { 2 } - 4 y ^ { 2 } = 36 \\8 x - 2 y = 0\end{array} \right.

A) (23,32),(23,32)( 2 \sqrt { 3 } , 3 \sqrt { 2 } ) , ( - 2 \sqrt { 3 } , - 3 \sqrt { 2 } )
B) (2,8)(2,8)( 2,8 ) ( - 2 , - 8 )
C) (23,32)( 2 \sqrt { 3 } , 3 \sqrt { 2 } )
D) (2,8)( 2,8 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
72
Identify the center and vertices of the hyperbola. x24y2+40y104=0x ^ { 2 } - 4 y ^ { 2 } + 40 y - 104 = 0

A)center: (0,5) vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )
B)center: (0,-5) vertices: (2,5),(2,5)( - 2 , - 5 ) , ( 2 , - 5 )
C)center: (0,5)( 0,5 ) vertices: (2,5),(2,5)( - 2,5 ) , ( 2,5 )
D)center: (0,5)( 0 , - 5 ) vertices: (6,5),(6,5)( - 6 , - 5 ) , ( 6 , - 5 )
E)center: (0,5)( 0 , - 5 ) vertices: (0,8),(0,2)( 0 , - 8 ) , ( 0 , - 2 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
73
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {xy2=0xy=10\left\{ \begin{array} { l } x - y ^ { 2 } = 0 \\x - y = - 10\end{array} \right.

A) (100,10)( 100,10 )
B) (0,10)( 0 , - 10 )
C) (10,0)( 10,0 )
D) (19+412,1+412),(19412,1412)\left( \frac { 19 + \sqrt { 41 } } { 2 } , \frac { - 1 + \sqrt { 41 } } { 2 } \right) , \left( \frac { 19 - \sqrt { 41 } } { 2 } , \frac { - 1 - \sqrt { 41 } } { 2 } \right)
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
74
Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {3xy=21x2y2=49\left\{ \begin{array} { r } 3 x - y = 21 \\x ^ { 2 } - y ^ { 2 } = 49\end{array} \right.

A) (7,0)(285,215)( - 7,0 ) \left( \frac { 28 } { 5 } , \frac { 21 } { 5 } \right)
B) (7,0)(354,214)( 7,0 ) \left( \frac { 35 } { 4 } , \frac { 21 } { 4 } \right)
C) (0,7)(28,7)( 0 , - 7 ) ( 28,7 )
D) (0,7)(7,42)( 0,7 ) ( - 7,42 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
75
Write the standard form of the equation of the hyperbola.  <strong>Write the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( x + 3 ) ^ { 2 } } { 4 } - \frac { ( y - 3 ) ^ { 2 } } { 16 / 5 } = 1  B)  \frac { ( y - 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x + 3 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( y - 3 ) ^ { 2 } } { 4 } - \frac { ( x + 3 ) ^ { 2 } } { 5 / 16 } = 1  D)  \frac { ( y + 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x - 3 ) ^ { 2 } } { 4 } = 1  E)  \frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y + 3 ) ^ { 2 } } { 16 / 5 } = 1

A) (x+3)24(y3)216/5=1\frac { ( x + 3 ) ^ { 2 } } { 4 } - \frac { ( y - 3 ) ^ { 2 } } { 16 / 5 } = 1
B) (y3)25/16(x+3)24=1\frac { ( y - 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x + 3 ) ^ { 2 } } { 4 } = 1
C) (y3)24(x+3)25/16=1\frac { ( y - 3 ) ^ { 2 } } { 4 } - \frac { ( x + 3 ) ^ { 2 } } { 5 / 16 } = 1
D) (y+3)25/16(x3)24=1\frac { ( y + 3 ) ^ { 2 } } { 5 / 16 } - \frac { ( x - 3 ) ^ { 2 } } { 4 } = 1
E) (x3)24(y+3)216/5=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y + 3 ) ^ { 2 } } { 16 / 5 } = 1
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
76
Solve the system by the method of substitution. {x2+y=1x+y=15\left\{ \begin{array} { l } x ^ { 2 } + y = 1 \\x + y = - 15\end{array} \right.

A) (1652,31652),(1+652,31+652)\left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right)
B) (1652,31+652),(1+652,31652)\left( \frac { 1 - \sqrt { 65 } } { 2 } , \frac { - 31 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 + \sqrt { 65 } } { 2 } , \frac { - 31 - \sqrt { 65 } } { 2 } \right)
C) (1+592,29+652),(1+592,29652)\left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { - 1 + \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
D) (1592,29+652),(1592,29652)\left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 + \sqrt { 65 } } { 2 } \right) , \left( \frac { 1 - \sqrt { 59 } } { 2 } , \frac { - 29 - \sqrt { 65 } } { 2 } \right)
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the system by the method of substitution. {x2y=68xy=6\left\{ \begin{array} { l } x ^ { 2 } - y = - 6 \\8 x - y = 6\end{array} \right.

A) (2,42)( 2,42 )
B) (6,30)( 6,30 )
C) (6,30),(2,42)( 6,30 ) , ( 2,42 )
D) (6,42),(2,10)( 6,42 ) , ( 2,10 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
78
Solve the system by the method of substitution. {y=x227x+2y=4\left\{ \begin{aligned}y & = x ^ { 2 } - 2 \\7 x + 2 y & = - 4\end{aligned} \right.

A) (0,2)(72,414)( 0 , - 2 ) \left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
B) (0,2)(72,414)( 0 , - 2 ) \left( \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
C) (72,414)\left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
D) (0,2)(72,414)( 0,2 ) \left( - \frac { 7 } { 2 } , \frac { 41 } { 4 } \right)
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
79
Identify the center and vertices of the hyperbola. x216y210x96y135=0x ^ { 2 } - 16 y ^ { 2 } - 10 x - 96 y - 135 = 0

A)center: (5,-3) vertices: (1,3),(9,3)( 1 , - 3 ) , ( 9 , - 3 )
B)center: (-5,3) vertices: (5,2),(5,4)( - 5,2 ) , ( - 5,4 )
C)center: (10,10)( - 10,10 ) vertices: (10,2),(10,10)( - 10,2 ) , ( - 10,10 )
D)center: (5,3)( 5 , - 3 ) vertices: (5,4),(5,2)( 5 , - 4 ) , ( 5 , - 2 )
E)center: (10,10)( 10 , - 10 ) vertices: (10,24),(10,24)( 10,24 ) , ( 10 , - 24 )
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the system by the method of substitution. {xy2=0xy=42\left\{ \begin{array} { l } x - y ^ { 2 } = 0 \\x - y = 42\end{array} \right.

A) (36,6),(25,5)( 36,6 ) , ( 25 , - 5 )
B) (36,6),(25,5)( 36 , - 6 ) , ( 25,5 )
C) (36,6),(49,7)( 36,6 ) , ( 49 , - 7 )
D) (36,6),(49,7)( 36 , - 6 ) , ( 49,7 )
E)no solution exists
Unlock Deck
Unlock for access to all 89 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 89 flashcards in this deck.