Deck 10: Parametric Equations; Polar Equations

Full screen (f)
exit full mode
Question
The parametric equations of the line segment from (1,0) to (0,1) with t \in [0,1] are

A) x(t)=t,y(t)=1tx ( t ) = t , y ( t ) = 1 - t
B) x(t)=t,y(t)=t1x ( t ) = t , y ( t ) = t - 1
C) x(t)=1t,y(t)=tx ( t ) = 1 - t , y ( t ) = t
D) x(t)=t1,y(t)=tx ( t ) = t - 1 , y ( t ) = t
E) x(t)=t1,y(t)=1tx ( t ) = t - 1 , y ( t ) = 1 - t
Use Space or
up arrow
down arrow
to flip the card.
Question
The parametric equations of the line segment from (-5,0) to (0,5) with t \in [0,5] are

A) x(t)=5t,y(t)=tx ( t ) = 5 - t , y ( t ) = t
B) x(t)=t,y(t)=5tx ( t ) = t , y ( t ) = 5 - t
C) x(t)=t,y(t)=t5x ( t ) = t , y ( t ) = t - 5
D) x(t)=t5,y(t)=tx ( t ) = t - 5 , y ( t ) = t
E) x(t)=t5,y(t)=5tx ( t ) = t - 5 , y ( t ) = 5 - t
Question
The parametric equations of the line segment from (-3,0) to (0,-3) with t \in [0,3] are

A) x(t)=t3,y(t)=t3x ( t ) = t - 3 , y ( t ) = t - 3
B) x(t)=3t,y(t)=tx ( t ) = 3 - t , y ( t ) = t
C) x(t)=3t,y(t)=tx ( t ) = 3 - t , y ( t ) = - t
D) x(t)=t3,y(t)=tx ( t ) = t - 3 , y ( t ) = - t
E) x(t)=t3,y(t)=3tx ( t ) = t - 3 , y ( t ) = 3 - t
Question
The parametric equations of the line segment from (0,-4) to (4,0) with t \in [0,4] are

A) x(t)=t4,y(t)=tx ( t ) = t - 4 , y ( t ) = t
B) x(t)=t,y(t)=4tx ( t ) = t , y ( t ) = 4 - t
C) x(t)=t,y(t)=t4x ( t ) = t , y ( t ) = t - 4
D) x(t)=4t,y(t)=tx ( t ) = 4 - t , y ( t ) = - t
E) x(t)=t4,y(t)=4tx ( t ) = t - 4 , y ( t ) = 4 - t
Question
The graph of the parametric equations x(t)=sint,y(t)=costx ( t ) = \sin t , y ( t ) = \cos t with t[π2,2π]t[π2,2π]t \in \left[ \frac { \pi } { 2 } , 2 \pi \right] t \in \left[ \frac { \pi } { 2 } , 2 \pi \right] is an arc of the unit circle from

A)(1,0) to (-1,0)
B)(0,1) to (1,0)
C)(1,0) to (0,-1)
D)(1,0) to (0,1)
E)(0,1) to (-1,0)
Question
The graph of the parametric equations x(t)=5cost,y(t)=5sintx ( t ) = 5 \cos t , y ( t ) = 5 \sin t with t[π,2π]t \in [ \pi , 2 \pi ] is an arc of a circle centered at the origin with radius 5 from

A)(0,-5) to (5,0)
B)(-5,0) to (0,5)
C)(-5,0) to (5,0)
D)(5,0) to (0,-5)
E)(0,5) to (-5,0)
Question
The graph of the parametric equations x(t)=3cost,y(t)=3x ( t ) = 3 \cos t , y ( t ) = 3 with t[3π2,2π]t \in \left[ \frac { 3 \pi } { 2 } , 2 \pi \right] is an arc of a circle centered at the origin with radius 3 from

A) (0,3) to (3,0)( 0 , - 3 ) \text { to } ( 3,0 )
B) (0,3) to (0,3)( 0,3 ) \text { to } ( 0 , - 3 )
C) (3,0) to (3,0)( - 3,0 ) \text { to } ( 3,0 )
D) (3,0) to (0,3)( 3,0 ) \text { to } ( 0 , - 3 )
E) (0,3) to (3,0)( 0,3 ) \text { to } ( - 3,0 )
Question
The graph of the parametric equations x(t)=4sint,y(t)=4cost,x ( t ) = 4 \sin t , y ( t ) = 4 \cos t, with t[π,2π]t \in [ \pi , 2 \pi ] is an arc of a circle centered at the origin with radius 4 from

A) (0,4) to (0,4)( 0,4 ) \text { to } ( 0 , - 4 )
B) (0,4) to (0,4)( 0 , - 4 ) \text { to } ( 0,4 )
C) (0,4) to (4,0)( 0 , - 4 ) \text { to } ( 4,0 )
D) (4,0) to (0,4)( 4,0 ) \text { to } ( 0 , - 4 )
E) (0,4) to (4,0)( 0,4 ) \text { to } ( - 4,0 )
Question
The rectangular equation of the plane curve, with parametric equations x(t)=2t+5,y(t)=4t7,x ( t ) = 2 t + 5 , y ( t ) = 4 t - 7, is

A) y=4x3y = 4 x - 3
B) y=2x7y = 2 x - 7
C) y=2x17y = 2 x - 17
D) y=4x+3y = 4 x + 3
E) y=2x2y = 2 x - 2
Question
The rectangular equation of the plane curve, with parametric equations x(t)=tant,y(t)=sec2t,x ( t ) = \tan t , y ( t ) = \sec ^ { 2 } t, is

A) y=xy = \sqrt { x }
B) y=x21y = x ^ { 2 } - 1
C) y=x2+1y = x ^ { 2 } + 1
D) y=x2+1y = \sqrt { x ^ { 2 } + 1 }
E) y=x21y = \sqrt { x ^ { 2 } - 1 }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=sin3t,y(t)=cos23tx ( t ) = \sin 3 t , y ( t ) = \cos ^ { 2 } 3 t with t[0,π6],t \in \left[ 0 , \frac { \pi } { 6 } \right], is

A) y=1x2y = 1 - x ^ { 2 }
B) y=x21y = x ^ { 2 } - 1
C) y=x2+1y = x ^ { 2 } + 1
D) y=1x2y = - \sqrt { 1 - x ^ { 2 } }
E) y=1x2y = \sqrt { 1 - x ^ { 2 } }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=et+1,y(t)=e2tx ( t ) = e ^ { - t } + 1 , y ( t ) = e ^ { 2 t } with t(,),t \in ( - \infty , \infty ), is

A) y=11x2y = \frac { 1 } { 1 - x ^ { 2 } }
B) y=1x21y = \frac { 1 } { x ^ { 2 } - 1 }
C) y=1(x1)2y = \frac { 1 } { ( x - 1 ) ^ { 2 } }
D) y=1(x+1)2y = \frac { 1 } { ( x + 1 ) ^ { 2 } }
E) y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=csct,y(t)=cott,x ( t ) = \csc t , y ( t ) = \cot t, is

A) y=11x2y = \frac { 1 } { 1 - x ^ { 2 } }
B) y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }
C) x2y2=1x ^ { 2 } - y ^ { 2 } = 1
D) x2+y2=1x ^ { 2 } + y ^ { 2 } = 1
E) y=1x2+1y = - \frac { 1 } { x ^ { 2 } + 1 }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=3t,y(t)=t+3x ( t ) = 3 - t , y ( t ) = t + 3 with t(,),t \in ( - \infty , \infty ), is

A) xy=6x - y = 6
B) x+y=6x + y = - 6
C) xy=6x - y = - 6
D) x+y=6x + y = 6
E) x+y=3x + y = - 3
Question
The rectangular equation of the plane curve, with parametric equations x(t)=3t3,y(t)=t3x ( t ) = \sqrt [ 3 ] { 3 - t } , y ( t ) = \sqrt [ 3 ] { t } with t(,),t \in ( - \infty , \infty ), is

A) x=y333x = \sqrt [ 3 ] { y ^ { 3 } - 3 }
B) y=x333y = \sqrt [ 3 ] { x ^ { 3 } - 3 }
C) x=y333x = \sqrt [ 3 ] { y ^ { 3 } } - 3
D) y=x333y = \sqrt [ 3 ] { x ^ { 3 } } - 3
E) x=3y33x = \sqrt [ 3 ] { 3 - y ^ { 3 } }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=4sint,y(t)=3cost,x ( t ) = 4 \sin t , y ( t ) = 3 \cos t, is

A) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) x216+y29=1- \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
E) 16x2+9y2=116 x ^ { 2 } + 9 y ^ { 2 } = 1
Question
The rectangular equation of the plane curve, with parametric equations x(t)=t,y(t)=3t52x ( t ) = \sqrt { t } , y ( t ) = 3 t ^ { \frac { 5 } { 2 } } is

A) x=3y3x = 3 y ^ { 3 }
B) y=3y3y = 3 y ^ { 3 }
C) x=3y5x = 3 y ^ { 5 }
D) y=3x5y = 3 x ^ { 5 }
E) y=3x5y = - 3 x ^ { 5 }
Question
The rectangular equation of the plane curve, with parametric equations x(t)=et,y(t)=3etx ( t ) = e ^ { - t } , y ( t ) = 3 e ^ { t } with t(,)t \in ( - \infty , \infty ) , is

A) y=3xy = \frac { 3 } { x }
B) y=x3y = \frac { x } { 3 }
C) y=3xy = - \frac { 3 } { x }
D) y=3xy = 3 x
E) y=x3y = - \frac { x } { 3 }
Question
Which one of the following sets of parametric equations does not correspond to the rectangular equation y=4x2?y = 4 x - 2 ?

A) x(t)=t,y(t)=4t2x ( t ) = t , y ( t ) = 4 t - 2
B) x(t)=t4+12,y(t)=tx ( t ) = \frac { t } { 4 } + \frac { 1 } { 2 } , y ( t ) = t
C) x(t)=t+12,y(t)=2tx ( t ) = \frac { t + 1 } { 2 } , y ( t ) = 2 t
D) x(t)=2t,y(t)=8t2x ( t ) = 2 t , y ( t ) = 8 t - 2
E) x(t)=2t,y(t)=8t4x ( t ) = 2 t , y ( t ) = 8 t - 4
Question
Which one of the following sets of parametric equations does not correspond to the rectangular equation y=6x3?y = 6 x ^ { 3 } ?

A) x(t)=t,y(t)=6t3x ( t ) = t , y ( t ) = 6 t ^ { 3 }
B) x(t)=2t,y(t)=48t3x ( t ) = 2 t , y ( t ) = 48 t ^ { 3 }
C) x(t)=t3,y(t)=6tx ( t ) = \sqrt [ 3 ] { t } , y ( t ) = 6 t
D) x(t)=t4,y(t)=6t6x ( t ) = t ^ { 4 } , y ( t ) = 6 t ^ { 6 }
E) x(t)=t32,y(t)=3t4x ( t ) = \frac { \sqrt [ 3 ] { t } } { 2 } , y ( t ) = \frac { 3 t } { 4 }
Question
Let x(t)=1et,y(t)=1+etx ( t ) = 1 - e ^ { t } , y ( t ) = 1 + e ^ { t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) ete ^ { t }
B) ete ^ { - t }
C)-1
D)1
E) 1et1 - e ^ { t }
Question
Let x(t)=1et,y(t)=e2tx ( t ) = 1 - e ^ { t } , y ( t ) = e ^ { 2 t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) ete ^ { t }
B) ete ^ { - t }
C)-1
D) e2te ^ { - 2 t }
E) 2et- 2 e ^ { t }
Question
Let x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) t22t+3- \frac { t ^ { 2 } } { 2 t + 3 }
B) 1t2(2t+3)- \frac { 1 } { t ^ { 2 } ( 2 t + 3 ) }
C)-1
D) 1t2(2t+3)\frac { 1 } { t ^ { 2 } ( 2 \mathrm { t } + 3 ) }
E) t22t+3- \frac { t ^ { 2 } } { 2 \mathrm { t } + 3 }
Question
Let x(t)=4t,y(t)=t2+3x ( t ) = 4 t , y ( t ) = t ^ { 2 } + 3 be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 2t- \frac { 2 } { t }
B) 2t\frac { 2 } { t }
C) t22\frac { t ^ { 2 } } { 2 }
D) t2\frac { t } { 2 }
E) t2- \frac { t } { 2 }
Question
Let x(t)=4cost,y(t)=3sintx ( t ) = 4 \cos t , y ( t ) = 3 \sin t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 3cott4- \frac { 3 \cot t } { 4 }
B) 3cott4\frac { 3 \cot t } { 4 }
C) 3tant4- \frac { 3 \tan t } { 4 }
D) 3tant4\frac { 3 \tan t } { 4 }
E) 4cott3- \frac { 4 \cot t } { 3 }
Question
Let x(t)=2t3,y(t)=3t2x ( t ) = 2 t ^ { 3 } , y ( t ) = 3 t ^ { 2 } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 1t- \frac { 1 } { t }
B) 2t\frac { 2 } { t }
C) t22\frac { t ^ { 2 } } { 2 }
D) 1t\frac { 1 } { t }
E) t2- \frac { t } { 2 }
Question
Let x(t)=sint,y(t)=costtx ( t ) = \sin t , y ( t ) = \cos t - t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) tantsect\tan t - \sec t
B) cottcsct\cot t - \csc t
C) (tant+sect)- ( \tan t + \sec t )
D) tant+sect\tan t + \sec t
E) cott+csct\cot t + \csc t
Question
Let x(t)=t+sint,y(t)=costx ( t ) = t + \sin t , y ( t ) = \cos t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) sint1+cost\frac { \sin t } { 1 + \cos t }
B) sint1cost- \frac { \sin t } { 1 - \cos t }
C) cost1+sint- \frac { \cos t } { 1 + \sin t }
D) sint1cost\frac { \sin t } { 1 - \cos t }
E) sint1+cost- \frac { \sin t } { 1 + \cos t }
Question
Let x(t)=etsint,y(t)=etcostx ( t ) = e ^ { t } \sin t , y ( t ) = e ^ { t } \cos t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) costsintcost+sint- \frac { \cos t - \sin t } { \cos t + \sin t }
B) cost+sintcostsint\frac { \cos t + \sin t } { \cos t - \sin t }
C) cost+sintcostsint- \frac { \cos t + \sin t } { \cos t - \sin t }
D) costsintcost+sint\frac { \cos t - \sin t } { \cos t + \sin t }
E) costsint2(cost+sint)\frac { \cos t - \sin t } { 2 ( \cos t + \sin t ) }
Question
Let x(t)=lnt,y(t)=1tx ( t ) = \ln t , y ( t ) = \frac { 1 } { t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 2t2- \frac { 2 } { t ^ { 2 } }
B) 1t2\frac { 1 } { t ^ { 2 } }
C) 1t- \frac { 1 } { t }
D) 1t\frac { 1 } { t }
E) 1t2- \frac { 1 } { t ^ { 2 } }
Question
Find the points on the curve x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } where the tangent line is vertical.

A) (274,2)\left( \frac { 27 } { 4 } , - 2 \right)
B) (0,1),(274,2)( 0,1 ) , \left( \frac { 27 } { 4 } , - 2 \right)
C) (0,1)( 0,1 )
D) (0,1),(274,2)( 0,1 ) , \left( \frac { 27 } { 4 } , 2 \right)
E) (0,1),(274,2)( 0,1 ) , \left( - \frac { 27 } { 4 } , 2 \right)
Question
Find the points on the curve x(t)=4t,y(t)=t2+3x ( t ) = 4 t , y ( t ) = t ^ { 2 } + 3 where the tangent line is horizontal.

A) (0,0)( 0,0 )
B) (3,3)( - 3,3 )
C) (3,0)( 3,0 )
D) (0,3)( 0,3 )
E) (0,3)( 0 , - 3 )
Question
Find the points on the curve x(t)=t39t,y(t)=t2x ( t ) = t ^ { 3 } - 9 t , y ( t ) = t ^ { 2 } where the tangent line is vertical.

A) (63,3)( 6 \sqrt { 3 } , 3 )
B) (63,3)( - 6 \sqrt { 3 } , 3 )
C) (63,33)( - 6 \sqrt { 3 } , 3 \sqrt { 3 } )
D) (63,33)( 6 \sqrt { 3 } , 3 \sqrt { 3 } )
E) (63,3),(63,3)( - 6 \sqrt { 3 } , 3 ) , ( 6 \sqrt { 3 } , 3 )
Question
Find the points on the curve x(t)=3t2,y(t)=t2+4tx ( t ) = 3 - t ^ { 2 } , y ( t ) = t ^ { 2 } + 4 t where the tangent line is horizontal.

A)(-4,-1)
B)(-1,4)
C)(-1,-4)
D)(1,-4)
E)(1,4)
Question
The length of the curve x(t)=t3,y(t)=t2x ( t ) = t ^ { 3 } , y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] is

A) 8(10101)3\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 3 }
B) 8(10101)18\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 18 }
C) 8(10101)36\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 36 }
D) 8(10101)9\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 9 }
E) 8(10101)27\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 27 }
Question
The length of the curve x(t)=9t3,y(t)=t2x ( t ) = 9 - t ^ { 3 } , y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] is

A) 8(10101)3\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 3 }
B) 8(10101)18\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 18 }
C) 8(10101)36\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 36 }
D) 8(10101)9\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 9 }
E) 8(10101)27\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 27 }
Question
The length of the curve x(t)=t22,y(t)=t32+3x ( t ) = t ^ { 2 } - 2 , y ( t ) = \frac { t ^ { 3 } } { 2 } + 3 with t[0,2]t \in [ 0,2 ] is

A) 4(13138)3\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 3 }
B) 4(13138)9\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 9 }
C) 4(13138)27\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 27 }
D) 4(13138)36\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 36 }
E) 4(13138)18\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 18 }
Question
The length of the curve x(t)=1cost,y(t)=1+sintx ( t ) = 1 - \cos t , y ( t ) = 1 + \sin t with t[π2,π2]t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] is

A) π2\frac { \pi } { 2 }
B) π\pi
C) 3π8\frac { 3 \pi } { 8 }
D) 3π4\frac { 3 \pi } { 4 }
E) 2π2 \pi
Question
The length of the curve x(t)=43cost,y(t)=3+3sintx ( t ) = 4 - 3 \cos t , y ( t ) = 3 + 3 \sin t with t[π2,π2]t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] is

A) π2\frac { \pi } { 2 }
B) 2π2 \pi
C) 3π3 \pi
D) π4\frac { \pi } { 4 }
E) 5π2\frac { 5 \pi } { 2 }
Question
The length of the curve x(t)=etcost,y(t)=etsintx ( t ) = e ^ { t } \cos t , y ( t ) = e ^ { t } \sin t with t[0,π]t \in [ 0 , \pi ] is

A) 3(eπ1)\sqrt { 3 } \left( e ^ { \pi } - 1 \right)
B) 3(eπ+1)\sqrt { 3 } \left( e ^ { \pi } + 1 \right)
C) 5(eπ1)\sqrt { 5 } \left( e ^ { \pi } - 1 \right)
D) 2(eπ+1)\sqrt { 2 } \left( e ^ { \pi } + 1 \right)
E) 2(eπ1)\sqrt { 2 } \left( e ^ { \pi } - 1 \right)
Question
The area of the surface generated by revolving the curve with x(t)=43cost,x ( t ) = 4 - 3 \cos t, about the x-axis is

A) πln(π+44)\pi \ln \left( \frac { \pi + 4 } { 4 } \right)
B) 6πln(π24)6 \pi \ln \left( \frac { \pi - 2 } { 4 } \right)
C) 6πln(π+24)6 \pi \ln \left( \frac { \pi + 2 } { 4 } \right)
D) 6πln(π+22)6 \pi \ln \left( \frac { \pi + 2 } { 2 } \right)
E) 6πln(π22)6 \pi \ln \left( \frac { \pi - 2 } { 2 } \right)
Question
The area of the surface generated by revolving the curve with x(t)=43cost,x ( t ) = 4 - 3 \cos t, about the y-axis is

A) 6π(2π3)6 \pi ( 2 \pi - 3 )
B) 6π(2π+3)6 \pi ( 2 \pi + 3 )
C) 8π(2π3)8 \pi ( 2 \pi - 3 )
D) 8π(2π+3)8 \pi ( 2 \pi + 3 )
E) 9π(2π3)9 \pi ( 2 \pi - 3 )
Question
The area of the surface generated by revolving the curve x(t)=t,y(t)=t2x ( t ) = t , \quad y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is

A) π(17171)2\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 2 }
B) π(1717+1)3\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 3 }
C) π(17171)3\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 3 }
D) π(1717+1)6\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 6 }
E) π(17171)6\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 6 }
Question
The area of the surface generated by revolving the curve x(t)=cost,y(t)=2+sintx ( t ) = \cos t , \quad y ( t ) = 2 + \sin t with t[0,2π]t \in [ 0,2 \pi ] about the x-axis is

A) 4π24 \pi ^ { 2 }
B) 8π28 \pi ^ { 2 }
C) 12π212 \pi ^ { 2 }
D) 16π216 \pi ^ { 2 }
E) 2π22 \pi ^ { 2 }
Question
The area of the surface generated by revolving the curve x(t)=t,y=3t2x ( t ) = t , \quad y = 3 t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is

A) π(1451451)60\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 60 }
B) π(1451451)54\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 54 }
C) π(1451451)48\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 48 }
D) π(1451451)42\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 42 }
E) π(1451451)36\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 36 }
Question
The area of the surface generated by revolving the curve x(t)=2t323,y=2tx ( t ) = \frac { 2 t ^ { \frac { 3 } { 2 } } } { 3 } , y = 2 \sqrt { t } with t[0,3]t \in [ 0 , \sqrt { 3 } ] about the y-axis is

A) 28π7\frac { 28 \pi } { 7 }
B) 29π8\frac { 29 \pi } { 8 }
C) 28π9\frac { 28 \pi } { 9 }
D) 27π8\frac { 27 \pi } { 8 }
E) 29π9\frac { 29 \pi } { 9 }
Question
The area of the surface generated by revolving the curve x(t)=4t,y=t22lntx ( t ) = 4 t , \quad y = t ^ { 2 } - 2 \ln t with t[0,1]t \in [ 0,1 ] about the y-axis is

A) 2π3\frac { 2 \pi } { 3 }
B) 4π3\frac { 4 \pi } { 3 }
C) 8π3\frac { 8 \pi } { 3 }
D) 16π3\frac { 16 \pi } { 3 }
E) 64π3\frac { 64 \pi } { 3 }
Question
The area of the surface generated by revolving the curve x(t)=8sint,y=2tsin(2t)x ( t ) = 8 \sin t , y = 2 t - \sin ( 2 t ) with t[0,π2]t \in \left[ 0 , \frac { \pi } { 2 } \right] about the y-axis is

A) 32π3\frac { 32 \pi } { 3 }
B) 64π3\frac { 64 \pi } { 3 }
C) 128π3\frac { 128 \pi } { 3 }
D) 256π3\frac { 256 \pi } { 3 }
E) 512π3\frac { 512 \pi } { 3 }
Question
The area of the surface generated by revolving the curve x(t)=3t2,y=2t3x ( t ) = 3 t ^ { 2 } , y = 2 t ^ { 3 } with t[0,1]t \in [ 0,1 ] about the y-axis is

A) 24π(1+2)7\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 7 }
B) 24π(21)3\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 3 }
C) 24π(21)5\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 5 }
D) 24π(1+2)5\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 5 }
E) 24π(1+2)3\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 3 }
Question
The area of the surface generated by revolving the curve x(t)=t+2,y=t22+tx ( t ) = t + \sqrt { 2 } , \quad y = \frac { t ^ { 2 } } { 2 } + \sqrt { t } with t[2,2]t \in [ - \sqrt { 2 } , \sqrt { 2 } ] about the y-axis is

A) 52π3\frac { 52 \pi } { 3 }
B) 26π3\frac { 26 \pi } { 3 }
C) 13π3\frac { 13 \pi } { 3 }
D) 11π5\frac { 11 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Question
The area of the surface generated by revolving the curve x(t)=3t,y=7t+1x ( t ) = 3 t , \quad y = \sqrt { 7 } t + 1 with t[0,1]t \in [ 0,1 ] about the x-axis is

A) 256πln2256 \pi \ln 2
B) 128πln2128 \pi \ln 2
C) 64πln264 \pi \ln 2
D) 32πln232 \pi \ln 2
E) 16πln216 \pi \ln 2
Question
The area of the surface generated by revolving the curve x(t)=1t2,y=3+2tx ( t ) = 1 - t ^ { 2 } , y = 3 + 2 t with t[0,1]t \in [ 0,1 ] about the x-axis is

A) 4π(2+1)(1+sinh11)4 \pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
B) π(2+1)(1+sinh11)\pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
C) 2π(21)(1+sinh11)2 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
D) 4π(21)(1+sinh11)4 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
E) 8π(21)(1+sinh11)8 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
Question
The rectangular equation that corresponds to the polar equation θ=π4\theta = \frac { \pi } { 4 } is

A) y=4xy = 4 x
B) 4y=x4 y = x
C) y=4xy = - 4 x
D) y=xy = x
E) y=xy = - x
Question
The rectangular equation that corresponds to the polar equation r=3cscθr = 3 \csc \theta is

A)y = 3
B)x = 3
C)y = x
D)y = 3x
E)y = -3
Question
The rectangular equation that corresponds to the polar equation r=5secθr = 5 \sec \theta is

A) y=5y = 5
B) y=5xy = 5 x
C) x=5x = 5
D) y=5xy = - 5 x
E) 5y=x5 y = x
Question
The rectangular equation that corresponds to the polar equation r=4cosθr = 4 \cos \theta is

A) x2+y2=4yx ^ { 2 } + y ^ { 2 } = 4 y
B) x2+y2=4xx ^ { 2 } + y ^ { 2 } = 4 x
C) x2+y2=4xx ^ { 2 } + y ^ { 2 } = - 4 x
D) x2+y2=4yx ^ { 2 } + y ^ { 2 } = - 4 y
E) y=4xy = - 4 x
Question
The rectangular equation that corresponds to the polar equation r=7sinθr = - 7 \sin \theta is

A) x2+y2=7yx ^ { 2 } + y ^ { 2 } = - 7 y
B) x2+y2=7xx ^ { 2 } + y ^ { 2 } = - 7 x
C) x2+y2=7yx ^ { 2 } + y ^ { 2 } = 7 y
D) x2+y2=7xx ^ { 2 } + y ^ { 2 } = 7 x
E) x2+y2=y7x ^ { 2 } + y ^ { 2 } = \frac { y } { 7 }
Question
The rectangular equation that corresponds to the polar equation r2=cosθr ^ { 2 } = \cos \theta is

A) (x2+y2)32=x\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
B) (x2+y2)32=y\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
C) (x2y2)32=x\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
D) (x2y2)32=y\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
E) (x2+y2)32=x\left( - x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
Question
The rectangular equation that corresponds to the polar equation r2=θ\frac { r } { 2 } = \theta is

A) y=2xy = 2 x
B) x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x
C) x2+y2=2tan1xy\sqrt { x ^ { 2 } + y ^ { 2 } } = 2 \tan ^ { - 1 } \frac { x } { y }
D) x2+y2=2xx ^ { 2 } + y ^ { 2 } = - 2 x
E) x2+y2=2tan1yx\sqrt { x ^ { 2 } + y ^ { 2 } } = 2 \tan ^ { - 1 } \frac { y } { x }
Question
The rectangular equation that corresponds to the polar equation r=21cosθr = \frac { 2 } { 1 - \cos \theta } is

A) x2=4y4x ^ { 2 } = 4 y - 4
B) x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x
C) y2=4x+4y ^ { 2 } = 4 x + 4
D) y2=4x4y ^ { 2 } = 4 x - 4
E) x2=4y+4x ^ { 2 } = 4 y + 4
Question
The rectangular equation that corresponds to the polar equation cotθ=5\cot \theta = 5 is

A) y=x5y = \frac { x } { 5 }
B) y=x5y = - \frac { x } { 5 }
C) x=y5x = \frac { y } { 5 }
D) x=y5x = - \frac { y } { 5 }
E) x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
Question
The rectangular equation that corresponds to the polar equation r=1+sinθr = 1 + \sin \theta is

A) x2+y2=x2+y2+xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + x
B) x2+y2=x2+y2yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } - y
C) x2+y2=x2+y2xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } - x
D) x2+y2=x2+y2+yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + y
E) x2+y2=x2+y2+yx ^ { 2 } + y ^ { 2 } = - \sqrt { x ^ { 2 } + y ^ { 2 } } + y
Question
The polar equation that corresponds to the rectangular equation x + y = 0 is

A) θ=π4\theta = \frac { \pi } { 4 }
B) θ=π4\theta = - \frac { \pi } { 4 }
C) θ=π2\theta = - \frac { \pi } { 2 }
D) θ=π3\theta = \frac { \pi } { 3 }
E) θ=π6\theta = - \frac { \pi } { 6 }
Question
The polar equation that corresponds to the rectangular equation x=2x = - 2 is

A) θ=π4\theta = \frac { \pi } { 4 }
B) θ=π4\theta = - \frac { \pi } { 4 }
C) rcosθ=2r \cos \theta = - 2
D) rsinθ=2r \sin \theta = - 2
E) θ=π\theta = \pi
Question
The polar equation that corresponds to the rectangular equation x2+y2=7xx ^ { 2 } + y ^ { 2 } = 7 x is

A) r=7sinθr = 7 \sin \theta
B) r=7sinθr = - 7 \sin \theta
C) r=π4r = \frac { \pi } { 4 }
D) r=7cosθr = - 7 \cos \theta
E) r=7cosθr = 7 \cos \theta
Question
The polar equation that corresponds to the rectangular equation 2x+y=42 x + y = 4 is

A) r=42cosθ+sinθr = \frac { 4 } { 2 \cos \theta + \sin \theta }
B) r=42cosθsinθr = \frac { 4 } { 2 \cos \theta - \sin \theta }
C) r=4cosθ+2sinθr = \frac { 4 } { \cos \theta + 2 \sin \theta }
D) r=4cosθ2sinθr = \frac { 4 } { \cos \theta - 2 \sin \theta }
E) r=42cosθ+sinθr = \frac { - 4 } { 2 \cos \theta + \sin \theta }
Question
The polar equation that corresponds to the rectangular equation x2+y2=5x ^ { 2 } + y ^ { 2 } = 5 is

A) r=5r = 5
B) r=25r = 25
C) r=5r = \sqrt { 5 }
D) r=5cosθr = \sqrt { 5 } \cos \theta
E) r=5cosθr = 5 \cos \theta
Question
The polar equation that corresponds to the rectangular equation x2y2=4x ^ { 2 } - y ^ { 2 } = 4 is

A) r2=42cos2θ+sin2θr ^ { 2 } = - \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
B) r2=4cos2θ2sin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - 2 \sin ^ { 2 } \theta }
C) r2=42cos2θ+sin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
D) r2=4cos2θsin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
E) r2=42cos2θsin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
Question
The polar equation that corresponds to the rectangular equation y=x2y = x ^ { 2 } is

A) r=tanθsecθr = - \tan \theta \sec \theta
B) r=tanθsecθr = \tan \theta \sec \theta
C) r=cotθcscθr = \cot \theta \csc \theta
D) r=cotθcscθr = - \cot \theta \csc \theta
E) r2=tanθsecθr ^ { 2 } = \tan \theta \sec \theta
Question
The polar equation that corresponds to the rectangular equation xy = 1 is

A) r2=tanθsecθr ^ { 2 } = - \tan \theta \sec \theta
B) r2=tanθsecθr ^ { 2 } = \tan \theta \sec \theta
C) r2=cscθsecθr ^ { 2 } = \csc \theta \sec \theta
D) r2=cscθsecθr ^ { 2 } = - \csc \theta \sec \theta
E) r2=cosθr ^ { 2 } = \cos \theta
Question
The polar equation that corresponds to the rectangular equation xy=0x - y = 0 is

A) r=42cosθ+sinθr = \frac { 4 } { 2 \cos \theta + \sin \theta }
B) r=tanθsecθr = \tan \theta \sec \theta
C) r=cscθsecθr = \csc \theta \sec \theta
D) r2=42cos2θsin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
E) θ=π4\theta = \frac { \pi } { 4 }
Question
The polar equation that corresponds to the rectangular equation y=3xy = \sqrt { 3 } x is

A) θ=2π5\theta = \frac { 2 \pi } { 5 }
B) θ=π6\theta = \frac { \pi } { 6 }
C) θ=π2\theta = \frac { \pi } { 2 }
D) θ=π4\theta = \frac { \pi } { 4 }
E) θ=π3\theta = \frac { \pi } { 3 }
Question
For a \neq 0, the polar curve r=acosθr = a \cos \theta is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Question
For a \neq 0, the polar curve r=asin3θr = a \sin 3 \theta is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Question
For a \neq 0, the polar curve r=a(1+cosθ)r = a ( 1 + \cos \theta ) is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Question
For a \neq 0, the polar curve r=a(1+2cosθ)r = a ( 1 + 2 \cos \theta ) is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Question
For a \neq 0, the polar curve r=a(13sinθ)r = a ( 1 - 3 \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Question
For a \neq 0, the polar curve r=a(32cosθ)r = a ( 3 - 2 \cos \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Question
For a \neq 0, the polar curve r=a(5+2sinθ)r = a ( 5 + 2 \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Question
For a \neq 0, the polar curve r=a(1sinθ)r = a ( 1 - \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/132
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Parametric Equations; Polar Equations
1
The parametric equations of the line segment from (1,0) to (0,1) with t \in [0,1] are

A) x(t)=t,y(t)=1tx ( t ) = t , y ( t ) = 1 - t
B) x(t)=t,y(t)=t1x ( t ) = t , y ( t ) = t - 1
C) x(t)=1t,y(t)=tx ( t ) = 1 - t , y ( t ) = t
D) x(t)=t1,y(t)=tx ( t ) = t - 1 , y ( t ) = t
E) x(t)=t1,y(t)=1tx ( t ) = t - 1 , y ( t ) = 1 - t
x(t)=1t,y(t)=tx ( t ) = 1 - t , y ( t ) = t
2
The parametric equations of the line segment from (-5,0) to (0,5) with t \in [0,5] are

A) x(t)=5t,y(t)=tx ( t ) = 5 - t , y ( t ) = t
B) x(t)=t,y(t)=5tx ( t ) = t , y ( t ) = 5 - t
C) x(t)=t,y(t)=t5x ( t ) = t , y ( t ) = t - 5
D) x(t)=t5,y(t)=tx ( t ) = t - 5 , y ( t ) = t
E) x(t)=t5,y(t)=5tx ( t ) = t - 5 , y ( t ) = 5 - t
x(t)=t5,y(t)=tx ( t ) = t - 5 , y ( t ) = t
3
The parametric equations of the line segment from (-3,0) to (0,-3) with t \in [0,3] are

A) x(t)=t3,y(t)=t3x ( t ) = t - 3 , y ( t ) = t - 3
B) x(t)=3t,y(t)=tx ( t ) = 3 - t , y ( t ) = t
C) x(t)=3t,y(t)=tx ( t ) = 3 - t , y ( t ) = - t
D) x(t)=t3,y(t)=tx ( t ) = t - 3 , y ( t ) = - t
E) x(t)=t3,y(t)=3tx ( t ) = t - 3 , y ( t ) = 3 - t
x(t)=t3,y(t)=tx ( t ) = t - 3 , y ( t ) = - t
4
The parametric equations of the line segment from (0,-4) to (4,0) with t \in [0,4] are

A) x(t)=t4,y(t)=tx ( t ) = t - 4 , y ( t ) = t
B) x(t)=t,y(t)=4tx ( t ) = t , y ( t ) = 4 - t
C) x(t)=t,y(t)=t4x ( t ) = t , y ( t ) = t - 4
D) x(t)=4t,y(t)=tx ( t ) = 4 - t , y ( t ) = - t
E) x(t)=t4,y(t)=4tx ( t ) = t - 4 , y ( t ) = 4 - t
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
5
The graph of the parametric equations x(t)=sint,y(t)=costx ( t ) = \sin t , y ( t ) = \cos t with t[π2,2π]t[π2,2π]t \in \left[ \frac { \pi } { 2 } , 2 \pi \right] t \in \left[ \frac { \pi } { 2 } , 2 \pi \right] is an arc of the unit circle from

A)(1,0) to (-1,0)
B)(0,1) to (1,0)
C)(1,0) to (0,-1)
D)(1,0) to (0,1)
E)(0,1) to (-1,0)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
6
The graph of the parametric equations x(t)=5cost,y(t)=5sintx ( t ) = 5 \cos t , y ( t ) = 5 \sin t with t[π,2π]t \in [ \pi , 2 \pi ] is an arc of a circle centered at the origin with radius 5 from

A)(0,-5) to (5,0)
B)(-5,0) to (0,5)
C)(-5,0) to (5,0)
D)(5,0) to (0,-5)
E)(0,5) to (-5,0)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
7
The graph of the parametric equations x(t)=3cost,y(t)=3x ( t ) = 3 \cos t , y ( t ) = 3 with t[3π2,2π]t \in \left[ \frac { 3 \pi } { 2 } , 2 \pi \right] is an arc of a circle centered at the origin with radius 3 from

A) (0,3) to (3,0)( 0 , - 3 ) \text { to } ( 3,0 )
B) (0,3) to (0,3)( 0,3 ) \text { to } ( 0 , - 3 )
C) (3,0) to (3,0)( - 3,0 ) \text { to } ( 3,0 )
D) (3,0) to (0,3)( 3,0 ) \text { to } ( 0 , - 3 )
E) (0,3) to (3,0)( 0,3 ) \text { to } ( - 3,0 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
8
The graph of the parametric equations x(t)=4sint,y(t)=4cost,x ( t ) = 4 \sin t , y ( t ) = 4 \cos t, with t[π,2π]t \in [ \pi , 2 \pi ] is an arc of a circle centered at the origin with radius 4 from

A) (0,4) to (0,4)( 0,4 ) \text { to } ( 0 , - 4 )
B) (0,4) to (0,4)( 0 , - 4 ) \text { to } ( 0,4 )
C) (0,4) to (4,0)( 0 , - 4 ) \text { to } ( 4,0 )
D) (4,0) to (0,4)( 4,0 ) \text { to } ( 0 , - 4 )
E) (0,4) to (4,0)( 0,4 ) \text { to } ( - 4,0 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
9
The rectangular equation of the plane curve, with parametric equations x(t)=2t+5,y(t)=4t7,x ( t ) = 2 t + 5 , y ( t ) = 4 t - 7, is

A) y=4x3y = 4 x - 3
B) y=2x7y = 2 x - 7
C) y=2x17y = 2 x - 17
D) y=4x+3y = 4 x + 3
E) y=2x2y = 2 x - 2
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
10
The rectangular equation of the plane curve, with parametric equations x(t)=tant,y(t)=sec2t,x ( t ) = \tan t , y ( t ) = \sec ^ { 2 } t, is

A) y=xy = \sqrt { x }
B) y=x21y = x ^ { 2 } - 1
C) y=x2+1y = x ^ { 2 } + 1
D) y=x2+1y = \sqrt { x ^ { 2 } + 1 }
E) y=x21y = \sqrt { x ^ { 2 } - 1 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
11
The rectangular equation of the plane curve, with parametric equations x(t)=sin3t,y(t)=cos23tx ( t ) = \sin 3 t , y ( t ) = \cos ^ { 2 } 3 t with t[0,π6],t \in \left[ 0 , \frac { \pi } { 6 } \right], is

A) y=1x2y = 1 - x ^ { 2 }
B) y=x21y = x ^ { 2 } - 1
C) y=x2+1y = x ^ { 2 } + 1
D) y=1x2y = - \sqrt { 1 - x ^ { 2 } }
E) y=1x2y = \sqrt { 1 - x ^ { 2 } }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
12
The rectangular equation of the plane curve, with parametric equations x(t)=et+1,y(t)=e2tx ( t ) = e ^ { - t } + 1 , y ( t ) = e ^ { 2 t } with t(,),t \in ( - \infty , \infty ), is

A) y=11x2y = \frac { 1 } { 1 - x ^ { 2 } }
B) y=1x21y = \frac { 1 } { x ^ { 2 } - 1 }
C) y=1(x1)2y = \frac { 1 } { ( x - 1 ) ^ { 2 } }
D) y=1(x+1)2y = \frac { 1 } { ( x + 1 ) ^ { 2 } }
E) y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
13
The rectangular equation of the plane curve, with parametric equations x(t)=csct,y(t)=cott,x ( t ) = \csc t , y ( t ) = \cot t, is

A) y=11x2y = \frac { 1 } { 1 - x ^ { 2 } }
B) y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }
C) x2y2=1x ^ { 2 } - y ^ { 2 } = 1
D) x2+y2=1x ^ { 2 } + y ^ { 2 } = 1
E) y=1x2+1y = - \frac { 1 } { x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
14
The rectangular equation of the plane curve, with parametric equations x(t)=3t,y(t)=t+3x ( t ) = 3 - t , y ( t ) = t + 3 with t(,),t \in ( - \infty , \infty ), is

A) xy=6x - y = 6
B) x+y=6x + y = - 6
C) xy=6x - y = - 6
D) x+y=6x + y = 6
E) x+y=3x + y = - 3
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
15
The rectangular equation of the plane curve, with parametric equations x(t)=3t3,y(t)=t3x ( t ) = \sqrt [ 3 ] { 3 - t } , y ( t ) = \sqrt [ 3 ] { t } with t(,),t \in ( - \infty , \infty ), is

A) x=y333x = \sqrt [ 3 ] { y ^ { 3 } - 3 }
B) y=x333y = \sqrt [ 3 ] { x ^ { 3 } - 3 }
C) x=y333x = \sqrt [ 3 ] { y ^ { 3 } } - 3
D) y=x333y = \sqrt [ 3 ] { x ^ { 3 } } - 3
E) x=3y33x = \sqrt [ 3 ] { 3 - y ^ { 3 } }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
16
The rectangular equation of the plane curve, with parametric equations x(t)=4sint,y(t)=3cost,x ( t ) = 4 \sin t , y ( t ) = 3 \cos t, is

A) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) x216+y29=1- \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
E) 16x2+9y2=116 x ^ { 2 } + 9 y ^ { 2 } = 1
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
17
The rectangular equation of the plane curve, with parametric equations x(t)=t,y(t)=3t52x ( t ) = \sqrt { t } , y ( t ) = 3 t ^ { \frac { 5 } { 2 } } is

A) x=3y3x = 3 y ^ { 3 }
B) y=3y3y = 3 y ^ { 3 }
C) x=3y5x = 3 y ^ { 5 }
D) y=3x5y = 3 x ^ { 5 }
E) y=3x5y = - 3 x ^ { 5 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
18
The rectangular equation of the plane curve, with parametric equations x(t)=et,y(t)=3etx ( t ) = e ^ { - t } , y ( t ) = 3 e ^ { t } with t(,)t \in ( - \infty , \infty ) , is

A) y=3xy = \frac { 3 } { x }
B) y=x3y = \frac { x } { 3 }
C) y=3xy = - \frac { 3 } { x }
D) y=3xy = 3 x
E) y=x3y = - \frac { x } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
19
Which one of the following sets of parametric equations does not correspond to the rectangular equation y=4x2?y = 4 x - 2 ?

A) x(t)=t,y(t)=4t2x ( t ) = t , y ( t ) = 4 t - 2
B) x(t)=t4+12,y(t)=tx ( t ) = \frac { t } { 4 } + \frac { 1 } { 2 } , y ( t ) = t
C) x(t)=t+12,y(t)=2tx ( t ) = \frac { t + 1 } { 2 } , y ( t ) = 2 t
D) x(t)=2t,y(t)=8t2x ( t ) = 2 t , y ( t ) = 8 t - 2
E) x(t)=2t,y(t)=8t4x ( t ) = 2 t , y ( t ) = 8 t - 4
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
20
Which one of the following sets of parametric equations does not correspond to the rectangular equation y=6x3?y = 6 x ^ { 3 } ?

A) x(t)=t,y(t)=6t3x ( t ) = t , y ( t ) = 6 t ^ { 3 }
B) x(t)=2t,y(t)=48t3x ( t ) = 2 t , y ( t ) = 48 t ^ { 3 }
C) x(t)=t3,y(t)=6tx ( t ) = \sqrt [ 3 ] { t } , y ( t ) = 6 t
D) x(t)=t4,y(t)=6t6x ( t ) = t ^ { 4 } , y ( t ) = 6 t ^ { 6 }
E) x(t)=t32,y(t)=3t4x ( t ) = \frac { \sqrt [ 3 ] { t } } { 2 } , y ( t ) = \frac { 3 t } { 4 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
21
Let x(t)=1et,y(t)=1+etx ( t ) = 1 - e ^ { t } , y ( t ) = 1 + e ^ { t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) ete ^ { t }
B) ete ^ { - t }
C)-1
D)1
E) 1et1 - e ^ { t }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
22
Let x(t)=1et,y(t)=e2tx ( t ) = 1 - e ^ { t } , y ( t ) = e ^ { 2 t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) ete ^ { t }
B) ete ^ { - t }
C)-1
D) e2te ^ { - 2 t }
E) 2et- 2 e ^ { t }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
23
Let x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) t22t+3- \frac { t ^ { 2 } } { 2 t + 3 }
B) 1t2(2t+3)- \frac { 1 } { t ^ { 2 } ( 2 t + 3 ) }
C)-1
D) 1t2(2t+3)\frac { 1 } { t ^ { 2 } ( 2 \mathrm { t } + 3 ) }
E) t22t+3- \frac { t ^ { 2 } } { 2 \mathrm { t } + 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
24
Let x(t)=4t,y(t)=t2+3x ( t ) = 4 t , y ( t ) = t ^ { 2 } + 3 be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 2t- \frac { 2 } { t }
B) 2t\frac { 2 } { t }
C) t22\frac { t ^ { 2 } } { 2 }
D) t2\frac { t } { 2 }
E) t2- \frac { t } { 2 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
25
Let x(t)=4cost,y(t)=3sintx ( t ) = 4 \cos t , y ( t ) = 3 \sin t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 3cott4- \frac { 3 \cot t } { 4 }
B) 3cott4\frac { 3 \cot t } { 4 }
C) 3tant4- \frac { 3 \tan t } { 4 }
D) 3tant4\frac { 3 \tan t } { 4 }
E) 4cott3- \frac { 4 \cot t } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
26
Let x(t)=2t3,y(t)=3t2x ( t ) = 2 t ^ { 3 } , y ( t ) = 3 t ^ { 2 } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 1t- \frac { 1 } { t }
B) 2t\frac { 2 } { t }
C) t22\frac { t ^ { 2 } } { 2 }
D) 1t\frac { 1 } { t }
E) t2- \frac { t } { 2 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
27
Let x(t)=sint,y(t)=costtx ( t ) = \sin t , y ( t ) = \cos t - t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) tantsect\tan t - \sec t
B) cottcsct\cot t - \csc t
C) (tant+sect)- ( \tan t + \sec t )
D) tant+sect\tan t + \sec t
E) cott+csct\cot t + \csc t
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
28
Let x(t)=t+sint,y(t)=costx ( t ) = t + \sin t , y ( t ) = \cos t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) sint1+cost\frac { \sin t } { 1 + \cos t }
B) sint1cost- \frac { \sin t } { 1 - \cos t }
C) cost1+sint- \frac { \cos t } { 1 + \sin t }
D) sint1cost\frac { \sin t } { 1 - \cos t }
E) sint1+cost- \frac { \sin t } { 1 + \cos t }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
29
Let x(t)=etsint,y(t)=etcostx ( t ) = e ^ { t } \sin t , y ( t ) = e ^ { t } \cos t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) costsintcost+sint- \frac { \cos t - \sin t } { \cos t + \sin t }
B) cost+sintcostsint\frac { \cos t + \sin t } { \cos t - \sin t }
C) cost+sintcostsint- \frac { \cos t + \sin t } { \cos t - \sin t }
D) costsintcost+sint\frac { \cos t - \sin t } { \cos t + \sin t }
E) costsint2(cost+sint)\frac { \cos t - \sin t } { 2 ( \cos t + \sin t ) }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
30
Let x(t)=lnt,y(t)=1tx ( t ) = \ln t , y ( t ) = \frac { 1 } { t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

A) 2t2- \frac { 2 } { t ^ { 2 } }
B) 1t2\frac { 1 } { t ^ { 2 } }
C) 1t- \frac { 1 } { t }
D) 1t\frac { 1 } { t }
E) 1t2- \frac { 1 } { t ^ { 2 } }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
31
Find the points on the curve x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } where the tangent line is vertical.

A) (274,2)\left( \frac { 27 } { 4 } , - 2 \right)
B) (0,1),(274,2)( 0,1 ) , \left( \frac { 27 } { 4 } , - 2 \right)
C) (0,1)( 0,1 )
D) (0,1),(274,2)( 0,1 ) , \left( \frac { 27 } { 4 } , 2 \right)
E) (0,1),(274,2)( 0,1 ) , \left( - \frac { 27 } { 4 } , 2 \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
32
Find the points on the curve x(t)=4t,y(t)=t2+3x ( t ) = 4 t , y ( t ) = t ^ { 2 } + 3 where the tangent line is horizontal.

A) (0,0)( 0,0 )
B) (3,3)( - 3,3 )
C) (3,0)( 3,0 )
D) (0,3)( 0,3 )
E) (0,3)( 0 , - 3 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
33
Find the points on the curve x(t)=t39t,y(t)=t2x ( t ) = t ^ { 3 } - 9 t , y ( t ) = t ^ { 2 } where the tangent line is vertical.

A) (63,3)( 6 \sqrt { 3 } , 3 )
B) (63,3)( - 6 \sqrt { 3 } , 3 )
C) (63,33)( - 6 \sqrt { 3 } , 3 \sqrt { 3 } )
D) (63,33)( 6 \sqrt { 3 } , 3 \sqrt { 3 } )
E) (63,3),(63,3)( - 6 \sqrt { 3 } , 3 ) , ( 6 \sqrt { 3 } , 3 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
34
Find the points on the curve x(t)=3t2,y(t)=t2+4tx ( t ) = 3 - t ^ { 2 } , y ( t ) = t ^ { 2 } + 4 t where the tangent line is horizontal.

A)(-4,-1)
B)(-1,4)
C)(-1,-4)
D)(1,-4)
E)(1,4)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
35
The length of the curve x(t)=t3,y(t)=t2x ( t ) = t ^ { 3 } , y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] is

A) 8(10101)3\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 3 }
B) 8(10101)18\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 18 }
C) 8(10101)36\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 36 }
D) 8(10101)9\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 9 }
E) 8(10101)27\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 27 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
36
The length of the curve x(t)=9t3,y(t)=t2x ( t ) = 9 - t ^ { 3 } , y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] is

A) 8(10101)3\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 3 }
B) 8(10101)18\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 18 }
C) 8(10101)36\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 36 }
D) 8(10101)9\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 9 }
E) 8(10101)27\frac { 8 ( 10 \sqrt { 10 } - 1 ) } { 27 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
37
The length of the curve x(t)=t22,y(t)=t32+3x ( t ) = t ^ { 2 } - 2 , y ( t ) = \frac { t ^ { 3 } } { 2 } + 3 with t[0,2]t \in [ 0,2 ] is

A) 4(13138)3\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 3 }
B) 4(13138)9\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 9 }
C) 4(13138)27\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 27 }
D) 4(13138)36\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 36 }
E) 4(13138)18\frac { 4 ( 13 \sqrt { 13 } - 8 ) } { 18 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
38
The length of the curve x(t)=1cost,y(t)=1+sintx ( t ) = 1 - \cos t , y ( t ) = 1 + \sin t with t[π2,π2]t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] is

A) π2\frac { \pi } { 2 }
B) π\pi
C) 3π8\frac { 3 \pi } { 8 }
D) 3π4\frac { 3 \pi } { 4 }
E) 2π2 \pi
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
39
The length of the curve x(t)=43cost,y(t)=3+3sintx ( t ) = 4 - 3 \cos t , y ( t ) = 3 + 3 \sin t with t[π2,π2]t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] is

A) π2\frac { \pi } { 2 }
B) 2π2 \pi
C) 3π3 \pi
D) π4\frac { \pi } { 4 }
E) 5π2\frac { 5 \pi } { 2 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
40
The length of the curve x(t)=etcost,y(t)=etsintx ( t ) = e ^ { t } \cos t , y ( t ) = e ^ { t } \sin t with t[0,π]t \in [ 0 , \pi ] is

A) 3(eπ1)\sqrt { 3 } \left( e ^ { \pi } - 1 \right)
B) 3(eπ+1)\sqrt { 3 } \left( e ^ { \pi } + 1 \right)
C) 5(eπ1)\sqrt { 5 } \left( e ^ { \pi } - 1 \right)
D) 2(eπ+1)\sqrt { 2 } \left( e ^ { \pi } + 1 \right)
E) 2(eπ1)\sqrt { 2 } \left( e ^ { \pi } - 1 \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
41
The area of the surface generated by revolving the curve with x(t)=43cost,x ( t ) = 4 - 3 \cos t, about the x-axis is

A) πln(π+44)\pi \ln \left( \frac { \pi + 4 } { 4 } \right)
B) 6πln(π24)6 \pi \ln \left( \frac { \pi - 2 } { 4 } \right)
C) 6πln(π+24)6 \pi \ln \left( \frac { \pi + 2 } { 4 } \right)
D) 6πln(π+22)6 \pi \ln \left( \frac { \pi + 2 } { 2 } \right)
E) 6πln(π22)6 \pi \ln \left( \frac { \pi - 2 } { 2 } \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
42
The area of the surface generated by revolving the curve with x(t)=43cost,x ( t ) = 4 - 3 \cos t, about the y-axis is

A) 6π(2π3)6 \pi ( 2 \pi - 3 )
B) 6π(2π+3)6 \pi ( 2 \pi + 3 )
C) 8π(2π3)8 \pi ( 2 \pi - 3 )
D) 8π(2π+3)8 \pi ( 2 \pi + 3 )
E) 9π(2π3)9 \pi ( 2 \pi - 3 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
43
The area of the surface generated by revolving the curve x(t)=t,y(t)=t2x ( t ) = t , \quad y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is

A) π(17171)2\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 2 }
B) π(1717+1)3\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 3 }
C) π(17171)3\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 3 }
D) π(1717+1)6\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 6 }
E) π(17171)6\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 6 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
44
The area of the surface generated by revolving the curve x(t)=cost,y(t)=2+sintx ( t ) = \cos t , \quad y ( t ) = 2 + \sin t with t[0,2π]t \in [ 0,2 \pi ] about the x-axis is

A) 4π24 \pi ^ { 2 }
B) 8π28 \pi ^ { 2 }
C) 12π212 \pi ^ { 2 }
D) 16π216 \pi ^ { 2 }
E) 2π22 \pi ^ { 2 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
45
The area of the surface generated by revolving the curve x(t)=t,y=3t2x ( t ) = t , \quad y = 3 t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is

A) π(1451451)60\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 60 }
B) π(1451451)54\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 54 }
C) π(1451451)48\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 48 }
D) π(1451451)42\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 42 }
E) π(1451451)36\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 36 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
46
The area of the surface generated by revolving the curve x(t)=2t323,y=2tx ( t ) = \frac { 2 t ^ { \frac { 3 } { 2 } } } { 3 } , y = 2 \sqrt { t } with t[0,3]t \in [ 0 , \sqrt { 3 } ] about the y-axis is

A) 28π7\frac { 28 \pi } { 7 }
B) 29π8\frac { 29 \pi } { 8 }
C) 28π9\frac { 28 \pi } { 9 }
D) 27π8\frac { 27 \pi } { 8 }
E) 29π9\frac { 29 \pi } { 9 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
47
The area of the surface generated by revolving the curve x(t)=4t,y=t22lntx ( t ) = 4 t , \quad y = t ^ { 2 } - 2 \ln t with t[0,1]t \in [ 0,1 ] about the y-axis is

A) 2π3\frac { 2 \pi } { 3 }
B) 4π3\frac { 4 \pi } { 3 }
C) 8π3\frac { 8 \pi } { 3 }
D) 16π3\frac { 16 \pi } { 3 }
E) 64π3\frac { 64 \pi } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
48
The area of the surface generated by revolving the curve x(t)=8sint,y=2tsin(2t)x ( t ) = 8 \sin t , y = 2 t - \sin ( 2 t ) with t[0,π2]t \in \left[ 0 , \frac { \pi } { 2 } \right] about the y-axis is

A) 32π3\frac { 32 \pi } { 3 }
B) 64π3\frac { 64 \pi } { 3 }
C) 128π3\frac { 128 \pi } { 3 }
D) 256π3\frac { 256 \pi } { 3 }
E) 512π3\frac { 512 \pi } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
49
The area of the surface generated by revolving the curve x(t)=3t2,y=2t3x ( t ) = 3 t ^ { 2 } , y = 2 t ^ { 3 } with t[0,1]t \in [ 0,1 ] about the y-axis is

A) 24π(1+2)7\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 7 }
B) 24π(21)3\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 3 }
C) 24π(21)5\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 5 }
D) 24π(1+2)5\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 5 }
E) 24π(1+2)3\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
50
The area of the surface generated by revolving the curve x(t)=t+2,y=t22+tx ( t ) = t + \sqrt { 2 } , \quad y = \frac { t ^ { 2 } } { 2 } + \sqrt { t } with t[2,2]t \in [ - \sqrt { 2 } , \sqrt { 2 } ] about the y-axis is

A) 52π3\frac { 52 \pi } { 3 }
B) 26π3\frac { 26 \pi } { 3 }
C) 13π3\frac { 13 \pi } { 3 }
D) 11π5\frac { 11 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
51
The area of the surface generated by revolving the curve x(t)=3t,y=7t+1x ( t ) = 3 t , \quad y = \sqrt { 7 } t + 1 with t[0,1]t \in [ 0,1 ] about the x-axis is

A) 256πln2256 \pi \ln 2
B) 128πln2128 \pi \ln 2
C) 64πln264 \pi \ln 2
D) 32πln232 \pi \ln 2
E) 16πln216 \pi \ln 2
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
52
The area of the surface generated by revolving the curve x(t)=1t2,y=3+2tx ( t ) = 1 - t ^ { 2 } , y = 3 + 2 t with t[0,1]t \in [ 0,1 ] about the x-axis is

A) 4π(2+1)(1+sinh11)4 \pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
B) π(2+1)(1+sinh11)\pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
C) 2π(21)(1+sinh11)2 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
D) 4π(21)(1+sinh11)4 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
E) 8π(21)(1+sinh11)8 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
53
The rectangular equation that corresponds to the polar equation θ=π4\theta = \frac { \pi } { 4 } is

A) y=4xy = 4 x
B) 4y=x4 y = x
C) y=4xy = - 4 x
D) y=xy = x
E) y=xy = - x
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
54
The rectangular equation that corresponds to the polar equation r=3cscθr = 3 \csc \theta is

A)y = 3
B)x = 3
C)y = x
D)y = 3x
E)y = -3
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
55
The rectangular equation that corresponds to the polar equation r=5secθr = 5 \sec \theta is

A) y=5y = 5
B) y=5xy = 5 x
C) x=5x = 5
D) y=5xy = - 5 x
E) 5y=x5 y = x
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
56
The rectangular equation that corresponds to the polar equation r=4cosθr = 4 \cos \theta is

A) x2+y2=4yx ^ { 2 } + y ^ { 2 } = 4 y
B) x2+y2=4xx ^ { 2 } + y ^ { 2 } = 4 x
C) x2+y2=4xx ^ { 2 } + y ^ { 2 } = - 4 x
D) x2+y2=4yx ^ { 2 } + y ^ { 2 } = - 4 y
E) y=4xy = - 4 x
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
57
The rectangular equation that corresponds to the polar equation r=7sinθr = - 7 \sin \theta is

A) x2+y2=7yx ^ { 2 } + y ^ { 2 } = - 7 y
B) x2+y2=7xx ^ { 2 } + y ^ { 2 } = - 7 x
C) x2+y2=7yx ^ { 2 } + y ^ { 2 } = 7 y
D) x2+y2=7xx ^ { 2 } + y ^ { 2 } = 7 x
E) x2+y2=y7x ^ { 2 } + y ^ { 2 } = \frac { y } { 7 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
58
The rectangular equation that corresponds to the polar equation r2=cosθr ^ { 2 } = \cos \theta is

A) (x2+y2)32=x\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
B) (x2+y2)32=y\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
C) (x2y2)32=x\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
D) (x2y2)32=y\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
E) (x2+y2)32=x\left( - x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
59
The rectangular equation that corresponds to the polar equation r2=θ\frac { r } { 2 } = \theta is

A) y=2xy = 2 x
B) x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x
C) x2+y2=2tan1xy\sqrt { x ^ { 2 } + y ^ { 2 } } = 2 \tan ^ { - 1 } \frac { x } { y }
D) x2+y2=2xx ^ { 2 } + y ^ { 2 } = - 2 x
E) x2+y2=2tan1yx\sqrt { x ^ { 2 } + y ^ { 2 } } = 2 \tan ^ { - 1 } \frac { y } { x }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
60
The rectangular equation that corresponds to the polar equation r=21cosθr = \frac { 2 } { 1 - \cos \theta } is

A) x2=4y4x ^ { 2 } = 4 y - 4
B) x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x
C) y2=4x+4y ^ { 2 } = 4 x + 4
D) y2=4x4y ^ { 2 } = 4 x - 4
E) x2=4y+4x ^ { 2 } = 4 y + 4
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
61
The rectangular equation that corresponds to the polar equation cotθ=5\cot \theta = 5 is

A) y=x5y = \frac { x } { 5 }
B) y=x5y = - \frac { x } { 5 }
C) x=y5x = \frac { y } { 5 }
D) x=y5x = - \frac { y } { 5 }
E) x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
62
The rectangular equation that corresponds to the polar equation r=1+sinθr = 1 + \sin \theta is

A) x2+y2=x2+y2+xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + x
B) x2+y2=x2+y2yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } - y
C) x2+y2=x2+y2xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } - x
D) x2+y2=x2+y2+yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + y
E) x2+y2=x2+y2+yx ^ { 2 } + y ^ { 2 } = - \sqrt { x ^ { 2 } + y ^ { 2 } } + y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
63
The polar equation that corresponds to the rectangular equation x + y = 0 is

A) θ=π4\theta = \frac { \pi } { 4 }
B) θ=π4\theta = - \frac { \pi } { 4 }
C) θ=π2\theta = - \frac { \pi } { 2 }
D) θ=π3\theta = \frac { \pi } { 3 }
E) θ=π6\theta = - \frac { \pi } { 6 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
64
The polar equation that corresponds to the rectangular equation x=2x = - 2 is

A) θ=π4\theta = \frac { \pi } { 4 }
B) θ=π4\theta = - \frac { \pi } { 4 }
C) rcosθ=2r \cos \theta = - 2
D) rsinθ=2r \sin \theta = - 2
E) θ=π\theta = \pi
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
65
The polar equation that corresponds to the rectangular equation x2+y2=7xx ^ { 2 } + y ^ { 2 } = 7 x is

A) r=7sinθr = 7 \sin \theta
B) r=7sinθr = - 7 \sin \theta
C) r=π4r = \frac { \pi } { 4 }
D) r=7cosθr = - 7 \cos \theta
E) r=7cosθr = 7 \cos \theta
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
66
The polar equation that corresponds to the rectangular equation 2x+y=42 x + y = 4 is

A) r=42cosθ+sinθr = \frac { 4 } { 2 \cos \theta + \sin \theta }
B) r=42cosθsinθr = \frac { 4 } { 2 \cos \theta - \sin \theta }
C) r=4cosθ+2sinθr = \frac { 4 } { \cos \theta + 2 \sin \theta }
D) r=4cosθ2sinθr = \frac { 4 } { \cos \theta - 2 \sin \theta }
E) r=42cosθ+sinθr = \frac { - 4 } { 2 \cos \theta + \sin \theta }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
67
The polar equation that corresponds to the rectangular equation x2+y2=5x ^ { 2 } + y ^ { 2 } = 5 is

A) r=5r = 5
B) r=25r = 25
C) r=5r = \sqrt { 5 }
D) r=5cosθr = \sqrt { 5 } \cos \theta
E) r=5cosθr = 5 \cos \theta
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
68
The polar equation that corresponds to the rectangular equation x2y2=4x ^ { 2 } - y ^ { 2 } = 4 is

A) r2=42cos2θ+sin2θr ^ { 2 } = - \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
B) r2=4cos2θ2sin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - 2 \sin ^ { 2 } \theta }
C) r2=42cos2θ+sin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
D) r2=4cos2θsin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
E) r2=42cos2θsin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
69
The polar equation that corresponds to the rectangular equation y=x2y = x ^ { 2 } is

A) r=tanθsecθr = - \tan \theta \sec \theta
B) r=tanθsecθr = \tan \theta \sec \theta
C) r=cotθcscθr = \cot \theta \csc \theta
D) r=cotθcscθr = - \cot \theta \csc \theta
E) r2=tanθsecθr ^ { 2 } = \tan \theta \sec \theta
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
70
The polar equation that corresponds to the rectangular equation xy = 1 is

A) r2=tanθsecθr ^ { 2 } = - \tan \theta \sec \theta
B) r2=tanθsecθr ^ { 2 } = \tan \theta \sec \theta
C) r2=cscθsecθr ^ { 2 } = \csc \theta \sec \theta
D) r2=cscθsecθr ^ { 2 } = - \csc \theta \sec \theta
E) r2=cosθr ^ { 2 } = \cos \theta
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
71
The polar equation that corresponds to the rectangular equation xy=0x - y = 0 is

A) r=42cosθ+sinθr = \frac { 4 } { 2 \cos \theta + \sin \theta }
B) r=tanθsecθr = \tan \theta \sec \theta
C) r=cscθsecθr = \csc \theta \sec \theta
D) r2=42cos2θsin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
E) θ=π4\theta = \frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
72
The polar equation that corresponds to the rectangular equation y=3xy = \sqrt { 3 } x is

A) θ=2π5\theta = \frac { 2 \pi } { 5 }
B) θ=π6\theta = \frac { \pi } { 6 }
C) θ=π2\theta = \frac { \pi } { 2 }
D) θ=π4\theta = \frac { \pi } { 4 }
E) θ=π3\theta = \frac { \pi } { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
73
For a \neq 0, the polar curve r=acosθr = a \cos \theta is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
74
For a \neq 0, the polar curve r=asin3θr = a \sin 3 \theta is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
75
For a \neq 0, the polar curve r=a(1+cosθ)r = a ( 1 + \cos \theta ) is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
76
For a \neq 0, the polar curve r=a(1+2cosθ)r = a ( 1 + 2 \cos \theta ) is a

A)Straight line
B)Circle
C)Three-petal rose
D)Cardioid
E)Limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
77
For a \neq 0, the polar curve r=a(13sinθ)r = a ( 1 - 3 \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
78
For a \neq 0, the polar curve r=a(32cosθ)r = a ( 3 - 2 \cos \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
79
For a \neq 0, the polar curve r=a(5+2sinθ)r = a ( 5 + 2 \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
80
For a \neq 0, the polar curve r=a(1sinθ)r = a ( 1 - \sin \theta ) is a

A)Circle
B)Cardioid
C)Limaçon with inner loop
D)Dimpled limaçon
E)Convex limaçon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.