Deck 5: Mechanistic Analysis

Full screen (f)
exit full mode
Question
Consider an elementary reaction Msol3++3ek1k1MM _ { s o l } ^ { 3 + }+ 3 e ^ { - } \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M



where M is a metal and
Msol3+M _ { s o l } ^ { 3 + }
is metal ion in solution. F denotes faraday constant. The net faradaic current density due to metal deposition is given by

A) Fk1[Msol3+]F k _ { 1 } \left[ M _ { s o l } ^ { 3 + } \right]
B) F{k1[Msal3+]k1}F \left\{ k _ { 1 } \left[ M _ { s a l } ^ { 3 + } \right] - k _ { - 1 } \right\}
C) 3F(k1[Msol3+]+k1)3 F \left( k _ { 1 } \left[ M _ { s o l } ^ { 3 + } \right] + k _ { - 1 } \right)
D) 3F{k1[Msal3+]k1}3 F \left\{ k _ { 1 } \left[ M _ { s a l } ^ { 3 + } \right] - k _ { - 1 } \right\}
Use Space or
up arrow
down arrow
to flip the card.
Question
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mat+M _ { a t } ^ { + }
is described by

A) Γdθdt=k1(1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
B) Γdθdt=k1(1θ)k1θk2θ+k2(1θ)CM2ad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { 2a d } ^ { 2 + } }
C) Γdθdt=k1(1θ)k1θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta
D) Γdθdt=k1(1θ)k1θk2θ+k2CMsa2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { s a } ^ { 2+ } }
Question
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the steady-state fractional surface coverage of the intermediate is given by

A) θss=k1dck1dc˙+k2\theta _ { ss } = \frac { k _ { 1 { dc} } } { k _ { 1 \dot {dc } } + k _ { 2 } }
B) θss=k1dck1dc˙+k1dc˙+k2+k2\theta _ { s s } = \frac { k _ { 1 d c } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } }
C) θss=k1dc+k2CMsol+2k1dc+k1dc+k2+k2CMsol+2\theta_{ss}=\frac{k_{1 d c}+k_{-2} C_{M^{+2}_{sol}}}{k_{1 d c}+k_{-1 d c}+k_{2}+k_{-2} C_{M^{+2}_{sol}} }
D) θss=k1dc˙k1dc˙k1dc˙+k1dc˙+k2+k2CM2ai2+\theta _ { ss } = \frac { k _ { 1 \dot { dc } } - k _ { - 1 \dot { dc } } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } C _ { M _ { 2a i } ^ { 2+ } } }
Question
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the faradaic current is given by

A) iF=F[k1(1θ)]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) \right]
B) iF=F[k1(1θ)k1θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta \right]
C) iF=F[k1(1θ)+k1θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { - 1 } \theta \right]
D) iF=F[k1(1θ)k1θk2θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta \right]
Question
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the value of dθdE\frac { d \theta } { d E }
is given by

A) (b1k1ak(1θss)b1k1akθss)(k1dak+k1ak+k2+k2CM2a2+jωΓ)\frac{\left(b_{1} k_{1 ak}\left(1-\theta_{s s}\right)-b_{-1} k_{-1ak} \theta_{ss}\right)}{\left(k_{1 dak}+k_{-1 ak}+k_{2}+k_{-2} C_{M_{2a}^{2}}+j \omega \Gamma\right)}
B) (b1k1dc˙b1k1dc˙)(k1dc˙+k1dc˙+k2+k2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 \dot {dc } } - b _ { - 1 } k _ { - 1 \dot {dc } } \right) } { \left( k _ { 1 \dot { dc} } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } + j \omega \Gamma \right) }
C) (b1k1d˙b1k1α˙)(k1α˙+k1k˙+k2+jΓΓ)\frac { \left( b _ { 1 } k _ { 1 \dot { d } } - b _ { - 1 } k _ { - 1 \dot { \alpha } } \right) } { \left( k _ { 1 \dot { \alpha } } + k _ { - 1 \dot { k } } + k _ { 2 } + j \Gamma \Gamma \right) }
D) (b1k1dc˙)(k1dc˙+k1dc˙+k2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 \dot { dc } } \right) } { \left( k _ { 1 \dot { dc} } + k _ { - 1 \dot { dc } } + k _ { 2 } + j \omega \Gamma \right) }
Question
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the faradaic impedance (ZF) is given by

A) (ZF)1=F(b1k1dc˙(1θss)b1k1α˙θss+(k1dc˙+k1dc˙+k2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 \dot { dc } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { \alpha } } \theta _ { ss } + \left( k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } \right) \frac { d \theta } { d E } \right)
B) (ZF)1=F(b1k1dc˙(1θss)b1k1˙θss(k1dc˙+k1dc˙+k2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d \dot { c } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { } } \theta _ { s s } - \left( k _ { 1 \dot { dc } } + k _ { - 1 \dot {dc } } + k _ { 2 } \right) \frac { d \theta } { d E } \right)
C) (ZF)1=F(b1k1dc˙(1θss)b1k1dc˙θss(k1dc˙+k1dc˙)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 \dot { dc } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot {dc } } \theta _ { s s } - \left( k _ { 1 d \dot {c } } + k _ { - 1 \dot { dc } } \right) \frac { d \theta } { d E } \right)
D) (ZF)1=F(b1k1dc˙(1θss)b1k1dc˙θss+(k1dc˙+k1dc˙)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d \dot { c} } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { dc } } \theta _ { ss } + \left( k _ { 1 d \dot { c} } + k _ { - 1 d \dot {c } } \right) \frac { d \theta } { d E } \right)
Question
Consider a reaction given by  Consider a reaction given by   .  -In the above reaction, the rate constants are given by  k _ { i } = k _ { i 0 } e ^ { b ^ { \prime } E }  where E is measured wrt equilibrium potential. Given that k<sub>10</sub> = 10<sup>-7</sup> mol cm<sup>-2</sup> s<sup>-1</sup>, b<sub>1</sub> = 20 V<sup>-1</sup>, b<sub>-1</sub> = -18 V<sup>-1 </sup> , k<sub>2</sub> = 10<sup>-5</sup> mol cm<sup>-2</sup> s<sup>-1</sup>, k<sub>-2</sub> = 10<sup>0</sup> cm s<sup>-1</sup> and the concentration of  M _ { s o l } ^ { 2 + }  as 25 mM, determine (i) k<sub>-10</sub> = ___________ mol cm<sup>-2 </sup> s<sup>-1</sup> . At E = 0.3 V vs. Equilibrium. potential, (ii) value of k<sub>1dc</sub> = ___________mol cm<sup>-2</sup> s<sup>-1</sup>, (iii) k<sub>-1dc</sub> = ___________mol cm<sup>-2</sup> s<sup>-1</sup>, (iv) steady state fractional surface coverage of the intermediate is _______ Remember that 1 M = 1 mol/lit = 10<sup>-3</sup> mol/ cm<sup>3</sup>.<div style=padding-top: 35px>  .

-In the above reaction, the rate constants are given by
ki=ki0ebEk _ { i } = k _ { i 0 } e ^ { b ^ { \prime } E }
where E is measured wrt equilibrium potential. Given that k10 = 10-7 mol cm-2 s-1, b1 = 20 V-1, b-1 = -18 V-1 , k2 = 10-5 mol cm-2 s-1, k-2 = 100 cm s-1 and the concentration of
Msol2+M _ { s o l } ^ { 2 + }
as 25 mM, determine (i) k-10 = ___________ mol cm-2 s-1 . At E = 0.3 V vs. "Equilibrium. potential", (ii) value of k1dc = ___________mol cm-2 s-1, (iii) k-1dc = ___________mol cm-2 s-1, (iv) steady state fractional surface coverage of the intermediate is _______
Remember that 1 M = 1 mol/lit = 10-3 mol/ cm3.
Question
When kinetics is rate-limiting, the faradaic impedance of a simple electron transfer reaction can be modeled as

A) a simple resistor
B) a simple capacitor
C) a capacitor in parallel with a resistor
D) none of the above
Question
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-The equation for fractional surface coverage of Aads is given by

A) k2dc˙k2kdc˙+k2dc˙+k1dc˙\frac { k _ { 2 \dot { dc } } } { k _ { 2 k \dot { dc } } + k _ { - 2 \dot { dc } } + k _ { 1 \dot { dc } } }
B) k2dck2dc+k2dc˙\frac { k _ { 2 dc } } { k _ { 2dc } + k _ { - 2 \dot {dc } } }
C) k2dcCAsolk2dcCAsol+k2dc+k1dcCPsol\frac{k_{2 dc} C_{\mathcal{A}^-_{\mathrm{sol}}}}{k_{2 dc} C_{A^-_{sol}}+k_{-2 d c}+k_{1 d c} C_{P_{sol}}}

D) k2dcCAsolk2dcCAsol+k2dc\frac{k_{2 dc} C_{A^-_{sol}}}{k_{2 dc} C_{A^-_{sol}}+k_{-2dc}}
Question
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-At Edc = 0.25 V vs. OCP, the value of fractional surface coverage of Aads is given by,
θ\theta ss = _________
Question
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-At the same potential (Edc = 0.25 V vs. OCP), the total Faradaic current is given by,
iF-dc = ______________ mA cm-2
Question
The polarization plot of an electrochemical system is given below.
<strong>The polarization plot of an electrochemical system is given below.   -If an impedance spectrum is acquired at E<sub>dc</sub> = 0.7 V vs. OCP, then the polarization resistance is expected to be.</strong> A) negative B) positive C) can be either negative or positive D) zero. <div style=padding-top: 35px>
-If an impedance spectrum is acquired at Edc = 0.7 V vs. OCP, then the polarization resistance is expected to be.

A) negative
B) positive
C) can be either negative or positive
D) zero.
Question
The polarization plot of an electrochemical system is given below.
<strong>The polarization plot of an electrochemical system is given below.   -In the same system, if an impedance spectrum is acquired at E<sub>dc</sub> = 1.2 V vs. OCP, then the polarization resistance is expected to be.</strong> A) negative B) positive C) can be either negative or positive D) zero. <div style=padding-top: 35px>
-In the same system, if an impedance spectrum is acquired at Edc = 1.2 V vs. OCP, then the polarization resistance is expected to be.

A) negative
B) positive
C) can be either negative or positive
D) zero.
Question
Consider the reaction
Mk1k1Mads++eMads++Mk2Mads++Msol++e\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } + M \stackrel { k _ {2 } } { \longrightarrow } M _ { ads} ^ { + } +M _ { sol } ^ { + } + e ^ { - }\end{array}

The kinetic parameters are given by k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, k-10 = 10-8 mol cm-2 s-1, b-1 = -10 V-1, k20 = 10-8 mol cm-2 s-1, b2 = 10 V-1 and Γ\varGamma = 10-8 mol cm-2.

-At Edc = 0.1 V vs. OCP, the fractional surface coverage of Mads is given by,
θ\theta ss = _________
Question
Consider the reaction
Mk1k1Mads++eMads++Mk2Mads++Msol++e\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } + M \stackrel { k _ {2 } } { \longrightarrow } M _ { ads} ^ { + } +M _ { sol } ^ { + } + e ^ { - }\end{array}

The kinetic parameters are given by k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, k-10 = 10-8 mol cm-2 s-1, b-1 = -10 V-1, k20 = 10-8 mol cm-2 s-1, b2 = 10 V-1 and Γ\varGamma = 10-8 mol cm-2.

-To model a system with the above mechanism, the minimum number of dc potentials at which EIS data should be taken to avoid an infinite number of solutions is __________
Question
In a kinetic limited electrochemical reaction, the number of loops appearing in the complex plane plot of EIS can be related to the

A) number of steps in the mechanism
B) the number of reacting species
C) the number of product species
D) the number of adsorbed intermediates
Question
Consider the reaction
Mk1Mads++eMads+k2Msol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s o l } ^ { + }\end{array} . Frumkin isotherm is used to describe the adsorption. The kinetic parameter values are k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, g = 15, β\beta 1 = -0.5 , k20 = 10-8 mol cm-2 s-1, β\beta 2 = +0.5 and Γ\varGamma = 10-8 mol cm-2.

-The maximum number of 'loops' that can appear in complex plane plots is _____________
Question
Consider the reaction
Mk1Mads++eMads+k2Msol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s o l } ^ { + }\end{array} . Frumkin isotherm is used to describe the adsorption. The kinetic parameter values are k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, g = 15, β\beta 1 = -0.5 , k20 = 10-8 mol cm-2 s-1, β\beta 2 = +0.5 and Γ\varGamma = 10-8 mol cm-2.

-In the above question, the total number of electrical elements required to model the reaction (i.e., only the Faradaic part, without considering the double-layer capacitor or solution resistance) is ____
Question
An impedance spectrum of an electrochemical reaction could be modeled well by the equivalent circuit given below. The solution resistance was negligible, mass transfer was rapid, and there was not film formation on the surface.
An impedance spectrum of an electrochemical reaction could be modeled well by the equivalent circuit given below. The solution resistance was negligible, mass transfer was rapid, and there was not film formation on the surface.   If a mechanism is proposed to explain the results, what is the minimum number of adsorbed intermediate species necessary to model the data? __________<div style=padding-top: 35px> If a mechanism is proposed to explain the results, what is the minimum number of adsorbed intermediate species necessary to model the data? __________
Question
Choose the mechanism(s), which, for appropriate values of kinetic parameters and dc potentials, can yield negative differential impedance.

A) MMads++eMads+Mads2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { a d s } ^ { 2 + } + e ^ { - } \\\\M _ { a d s } ^ { + } \rightarrow M _ { s o l } ^ { 2 + }\end{array}
B) MMsol++eM \rightarrow M _ { s o l } ^ { + } + e ^ { - }
C) MMads++eMads+Msol 2++e\begin{array} { l } M \rightarrow M _ { a d s } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { \text {sol } } ^ { 2 + } + e ^ { - }\end{array}
D) MMads++eMads++MMads++Msol+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a d s } ^ { + } + M ^ { } \rightarrow M _ { a d s } ^ { + } + M _ { s o l } ^ { + }\end{array}
Question
Consider the following mechanism.
MMads++eMads+Madi2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a d s } ^ { + } \rightarrow M _ { a d i } ^ { 2 + } + e ^ { - } \\\\M _ { a d s} ^ { + } \rightarrow M _ { s o l } ^ { 2 + }\end{array}
The faradaic impedance of this system is to be modeled using the Maxwell type circuit with resistances and capacitances. Apart from polarization resistance, how many Maxwell pairs are necessary to adequately model an impedance spectrum from this system? ________
At how many potentials should EIS be acquired to eliminate the possibility of an infinite number of solutions _________
Question
A Frumkin isotherm model will reduce to Langmuir isotherm when parameter "g" is _____
Question
Temkin model describes the relationship between _______ and fractional surface coverage

A) rate constant
B) equilibrium constant
C) potential
D) current
Question
Consider the reaction [Fe(CN)6]4k1[Fe(CN)6]3+e\left[ \mathrm { Fe } ( \mathrm { CN } ) _ { 6 } \right] ^ { 4 - } \underset { k _ { - 1 } } { \longleftarrow } \left[ \mathrm { Fe } ( \mathrm { CN } ) _ { 6 } \right] ^ { 3 - } + e ^ { - }
The net reaction rate is given by

A) k1[Fe2+]k _ { 1 } \left[ F e ^ { 2 + } \right]
B) k1[Fe2+]k1[Fe3+]k _ { 1 } \left[ F e ^ { 2 + } \right] - k _ { - 1 } \left[ F e ^ { 3 + } \right]
C) k1[Fe2+]+k1[Fe3+]k _ { 1 } \left[ F e ^ { 2 + } \right] + k _ { - 1 } \left[ F e ^ { 3 + } \right]
D) none of the above
Question
The following impedance spectrum was obtained for an electrochemical system.
 <strong>The following impedance spectrum was obtained for an electrochemical system.   Which of the following mechanisms can be considered to describe the electrochemical system?</strong> A)  \begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\ \\ M _ { a ds } ^ { + } + M \stackrel { k _ { 2 } } { \longrightarrow } M _ { a ds } ^ { + } + M _ { s o l } ^ { 2 + } + 2 e ^ { - } \end{array}  B)  \begin{array} { l } M \stackrel { x _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\ \\ M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s d } ^ { 2 + } + M + e ^ { - } \end{array}  C)  \begin{array} { l } M \stackrel { k } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\ \\ M _ { ads } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { ad s } ^ { 2 + } + e ^ { - } \\ \\ M _ { ads } ^ { 2 + }  \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } \end{array}  D)  \begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\ \\ M _ { a ds } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } + e ^ { - } \\ \\ M \stackrel { k _ { 3 } } { \longrightarrow } M _ { so l } ^ { 2 + } + 2 e ^ { - } \end{array}  <div style=padding-top: 35px>  Which of the following mechanisms can be considered to describe the electrochemical system?

A) Mk1Mads++eMads++Mk2Mads++Msol2++2e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } + M \stackrel { k _ { 2 } } { \longrightarrow } M _ { a ds } ^ { + } + M _ { s o l } ^ { 2 + } + 2 e ^ { - }\end{array}
B) Mx1Mads++eM+Mads+k2Msd2++M+e\begin{array} { l } M \stackrel { x _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s d } ^ { 2 + } + M + e ^ { - }\end{array}
C) MkMads++eMads+k3Mads2++eMads2+k3Msol2+\begin{array} { l } M \stackrel { k } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\\\M _ { ads } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { ad s } ^ { 2 + } + e ^ { - } \\\\M _ { ads } ^ { 2 + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + }\end{array}
D) Mk1Mads++eMads+k3Msol2++eMk3Msol2++2e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } + e ^ { - } \\\\M \stackrel { k _ { 3 } } { \longrightarrow } M _ { so l } ^ { 2 + } + 2 e ^ { - }\end{array}
Question
A unique method of representing impedance spectrum is

A) Voigt representation
B) Maxwell representation
C) Ladder representation
D) Zero-pole representation
Question
Consider the following elementary reaction Mk1k1Msol2++2eM \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }M _ { s ol } ^ { 2 + } + 2 e ^ { - }

where M is metal and
Msol 2+M _ { \text {sol } } ^ { 2 + }
is metal ion in solution, F denotes Faraday constant. The net faradaic current density due to metal dissolution is

A) 2F(k1[Msd+]k1)2 F \left( k _ { 1 } \left[ M _ { s d } ^ { + } \right] - k _ { - 1 } \right)
B) 2F{k1k1[Msol2+]}2 F \left\{ k _ { 1 } - k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
C) F{k1k1[Msol2+]}F \left\{ k _ { 1 } - k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
D) 2F{k1+k1[Msol2+]}2 F \left\{ k _ { 1 } + k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mads+M _ { a ds } ^ { + }
is given by

A) Γdθdt=k1(1θ)k2θk2CMad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta - k _ { - 2 } C _ { M _ { a d } ^ { 2 + } }
B) Γdθdt=k1(1θ)k2θ+k2CMsol+2(1θ)\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { sol } ^ { +2} } ( 1 - \theta )
C) Γdθdt=k1(1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
D) Γdθdt=k1(1θ)k2CMsol+2\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 2 } C _ {M_ {sol } ^ { + 2 } }
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the steady-state fractional surface coverage of the intermediate is given by

A) θss=k1dc˙k1dc˙+k2dc\theta _ { s s } = \frac { k _ { 1 \dot { dc } } } { k _ { 1 \dot {dc } } + k _ { 2 dc } }
B) θss=k1dc˙kdc+k2dc˙+k2dc˙\theta _ { s s } = \frac { k _ { 1 \dot {dc } } } { k _ { \mathrm { dc } } + k _ { 2 \dot { dc } } + k _ { - 2 \dot {dc } } }
C) θss=k1dc+k2dcCMsol+2k1dc+k2dc+k2dcCMsol+2\theta _ { s s } = \frac { k _ { 1dc } + k _ { - 2dc } C _ { M _ { sol} ^ {+2} } } { k _ { 1dc } + k _ { 2 dc } + k _ {- 2 dc} C _ { M _ {sol} ^ { +2 }} }
D) θss=k1dck2dcCMsol+2k1dc+k2dc+k2dcCMsol+2\theta _ { s s } = \frac { k _ { 1dc } - k _ { - 2dc} C _ { M _ { s ol } ^ { +2 } } } { k _ { 1 dc} + k _ { 2dc} + k _ { - 2dc } C _ { M _ {sol} ^ { +2 } } }
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the faradaic current is given by

A) iF=F[k1(1θ)]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) \right]
B) iF=F[k1(1θ)+k2θk2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta - k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol} } ^ { +2 } } \right]
C) iF=F[k1(1θ)k2θ+k2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol } } ^ { +2 } } \right]
D) iF=F[k1(1θ)+k2θ+k2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { sol} ^ {{ +2 } } } \right]
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the value of dθdE\frac { d \theta } { d E }
is given by

A) (b1k1dc(1θss)b2k2dcθss+b2k2dcCMsol+2(1θss)k1dc+k2dc+k2dCMsol+2+j?? \frac {(b_{1}k_{1dc}(1-\theta _ { s s })-{b_{2}k_{2dc}}\theta _ { s s } +b_{-2}{k_{-2dc}C_{M^{+2}_{sol}}(1-\theta _ { s s })}}{k_{1dc}+k_{2dc}+{k_{-2d}C_{M^{+2}_{sol}}+{j??}}}
B) (b1k1dc(1θss)b2k2dcθss)(k1dc+k2dc+k2dcCMsol+2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 dc} \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2{ dc } } \theta _ { ss } \right) } { \left( k _ { 1 { dc } } + k _ { 2 dc } + k _ { - 2 dc } C _ {M _ { s ol { } } ^ { +2 } } + j \omega \Gamma \right) }
C) (b1k1dc(1θss)b2k2dcθss+b2k2dcCMsol+2)(k1dc+k2dc+k2dcCMsol+2+jωΓ)\frac{\left(b_{1} k_{1dc}\left(1-\theta_{s s}\right)-b_{2} k_{2{dc}} \theta_{ss}+b_{-2} k_{-2 {dc}} C_{M_{sol}^{+2}}\right)}{\left(k_{1 {dc}}+k_{2{dc}}+k_{-2 {dc}} C_{M_{{ sol}}^{+2}}+j \omega \Gamma\right)}

D) (b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)k1dc+k2dc+k2dCMsol+2+j?? \frac {(b_{1}k_{1dc}(1-\theta _ { s s })+{b_{2}k_{2dc}}\theta _ { s s } -b_{-2}{k_{-2dc}C_{M^{+2}_{sol}}(1-\theta _ { s s })}}{k_{1dc}+k_{2dc}+{k_{-2d}C_{M^{+2}_{sol}}+{j??}}}
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the faradaic impedance (ZF) is given by iF=F[k1(1θ)+k2θk2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta - k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol } } ^ { +2 } } \right]

A) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) - \left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
B) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) - \left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
C) (ZF)1=F(b1k1dc(1θss)+b2k2dcθss(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 { dc } } \left( 1 - \theta _ { s s } \right) + b _ { 2 } k _ { 2 {dc } } \theta _ { ss } - \left( k _ { 1 { dc } } - k _ { 2 d { c } } + k _ { - 2 { dc } } C _ { M^{+2} _ { { sol } } } \right) \frac { d \theta } { d E } \right)
D) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)+(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) +\left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-The complex plane plot of impedance spectra of the above reaction can exhibit at the most ______ loops
Question
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-For the above mechanism, the mid and low-frequency data, in the complex plane plot can exhibit

A) capacitive loop
B) inductive loop
C) Warburg behavior
D) none of the above
Question
Negative real values of impedance indicate that

A) there is a problem in the measurement
B) when a potential is applied, current flows in the opposite direction
C) when potential is increased, current decreases
D) the phase difference between the potential and current is 180 °
Question
The polarization plot of an electrochemical system is given below. An impedance spectrum is acquired at some dc bias and shows hidden negative impedance. <strong>The polarization plot of an electrochemical system is given below. An impedance spectrum is acquired at some dc bias and shows hidden negative impedance.   The dc bias at which the spectrum was acquired could be</strong> A) 0.4 V B) 0.8 V C) 1.2 V D) none of the above <div style=padding-top: 35px> The dc bias at which the spectrum was acquired could be

A) 0.4 V
B) 0.8 V
C) 1.2 V
D) none of the above
Question
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-The mass balance equation for fractional surface coverage of Aads is given by

A) Γdθdt=k1[Psd]k1[Qsol]+k2[Asol]k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } \left[ P _ { s d } \right] - k _ { - 1 } \left[ Q _ { s ol } \right] + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] - k _ { - 2 } \theta
B) Γdθdt=k2[Asd](1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 2 } \left[ A _ { s d } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta
C) Γdθdt=k1[Psol](1θ)k1[Qsol]θ+k2[Asol](1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] \theta + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta
D) Γdθdt=k2[Asol]k2θ\Gamma \frac { d \theta } { d t } = k _ { 2 } \left[ A _ { s ol} ^ { - } \right] - k _ { - 2 } \theta
Question
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the equation for fractional surface coverage of Aads is given by

A) k2dc[Asd]k1dk˙[Psol]k1[Qsol]+k2dc[Asol]+k2dc\frac { k _ { 2 d c } \left[ A _ { s d } ^ { - } \right] } { k _ { 1 d \dot { k } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2 d c } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 d c } }
B) k1dc[Psol]+k2dc[Asol]k1dc[Psol]]k1[Qsol]k2dc[Asol]+k2dc\frac { k _ { 1 { dc} } \left[ P _ { s o l } \right] + k _ { 2 {dc } } \left[ A _ { sol } ^ { - } \right] } { k _ { 1 { dc } } \left[ P _ { s o l ] } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] k _ { 2 { dc } } \left[ A _ { s ol } ^ { - } \right] + k _ { - 2 { dc } } }
C) k1dc[Psol]k1[Qsol]+k2dc[Asol]k1k˙[Psol]k1[Qsol]+k2dc[Asol]+k2dc\frac { k _ { 1 { dc } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2{ dc } } \left[ A _ { s o l } ^ { - } \right] } { k _ { 1 \dot { k } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2{dc } } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 { dc } } }
D) k2dc[Asol]k2dc[Asol]+k2dc\frac { k _ { 2dc } \left[ A _ { s o l } ^ { - } \right] } { k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 dc } }
Question
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the faradaic current is given by

A) iF=F{k1[Psol](1θ)k1[Qsol](1θ)+k2[Asol](1θ)k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] ( 1 - \theta ) + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
B) iF=F{k1[Psol](1θ)k1[Qsol]θ+k2[Asol](1θ)k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] \theta + k _ { 2 } \left[ A _ { s ol } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
C) iF=F{k1[Psol ](1θ)k1[Qsol](1θ)+k2[Asol]k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { \text {sol } } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] ( 1 - \theta ) + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] - k _ { - 2 } \theta \right\}
D) iF=F{k2[Asal](1θ)k2θ}i _ { F } = F \left\{ k _ { 2 } \left[ A _ { s a l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
Question
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the expression for dθdE\frac { d \theta } { d E }
is given by

A) dθdE=b2k2dc[Asol]b2k2dck2dc[Asol]+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2dc } \left[ A _ { so l } ^ { - } \right] - b _ { - 2 } k _ { - 2 dc} } { k _ { 2 dc } \left[ A _ { s ol } ^ { - } \right] + k _ { - 2 { dc} } + j \omega \Gamma }
B) dθdE=b2k2dc[Asol](1θss)b2k2dcθssk2dc[Asol](1θss)+k2dcθss+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2 dc } \left[ A _ { s ol } ^ { - } \right] \left( 1 - \theta _ { ss } \right) - b _ { - 2 } k _ { - 2 dc } \theta _ { s s } } { k _ { 2 d c} \left[ A _ { so l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) + k _ { - 2 dc } \theta _ { ss } + j \omega \Gamma }
C) dθdE=b2k2dc[Asol](1θss)b2k2dcθssk2dc[Asol]+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2dc } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 dc } \theta _ { s s } } { k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 dc } + j \omega \Gamma }
D) dθdE=b2k2dc[Asol]b2k2dck2d˙[Asol](1θss)+k2dcθss+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] - b _ { - 2 } k _ { - 2 d c } } { k _ { 2 d \dot { } } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) + k _ { - 2 d c } \theta _ { s s} + j \omega \Gamma }
Question
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same mechanism, the charge transfer resistance (Rt) is given by

A) (Rt)1=F{b1k1dc[Psol](1θss)b1k1dc[Qsol](1θss)}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 { d c} } \left[ P _ { s o l } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 { dc } } \left[ Q _ { s o l } \right] \left( 1 - \theta _ { s s } \right) \right\}
B) (Rt)1=F{b1k1dc[Psol](1θss)b1k1dc[Qsol](1θss)+b2k2dc[Asol](1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ \begin{array} { l } b _ { 1 } k _ { 1 dc } \left[ P _ { so l } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 { dc} } \left[ Q _ { s o l } \right] \left( 1 - \theta _ { ss} \right) \\+ b _ { 2 } k _ { 2 { dc } } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 { dc } } \theta _ { s s }\end{array} \right\}
C) (Rt)1=F{b1k1dc[Psol]b1k1dc[Qsol]+b2k2dc[Asol]b2k2dc}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 d c} \left[ P _ { s ol } \right] - b _ { - 1 } k _ { - 1 dc} \left[ Q _ { s o l } \right] + b _ { 2 } k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] - b _ { - 2 } k _ { - 2 d c } \right\}
D) (Rt)1=F{b2k2dc[Asol](1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 2 } k _ { 2 { dc} } \left[ A _ { s ol } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 { dc} } \theta _ { ss } \right\}
Question
Consider the reaction Consider the reaction   -If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____<div style=padding-top: 35px>
-If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
Question
Consider the reaction Consider the reaction   -For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____<div style=padding-top: 35px>
-For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
Question
Consider the reaction Consider the reaction   -The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______<div style=padding-top: 35px>
-The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-The mass balance equation for fractional surface coverage of Mads+M _ { a d s} ^ { + }
is given by

A) Γdθdt=k1(1θ)k2θ(1θ)+k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) + k _ { 3 } \theta
B) Γdθdt=k1(1θ)k2θ(1θ)\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta )
C) Γdθdt=k1(1θ)k2θ(1θ)k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) - k _ { 3 } \theta
D) Γdθdt=k1(1θ)k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 3 } \theta
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the equation for fractional surface coverage of Aads is given by

A) k1dck1dc+k2dc+k3dc\frac { k _ { 1 { dc } } } { k _ { 1 { dc} } + k _ { 2 dc } + k _ { 3 {dc } } }
B) k1dck1dc+k3dc\frac { k _ { 1 d c } } { k _ { 1 dc} + k _ { 3 d c } }
C) k3dck1dc+k2d˙+k3dc\frac { k _ { 3 { dc } } } { k _ { 1 { dc } } + k _ { 2 d \dot { } } + k _ { 3 { dc } } }
D) k3dck1dc+k3dc\frac { k _ { 3 { dc } } } { k _ { 1 {dc } } + k _ { 3 d c} }
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the faradaic current is given by

A) iF=F{k1(1θ)+k2θ(1θ)}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta ( 1 - \theta ) \right\}
B) iF=F{k1(1θ)+k2θ(1θ)+k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta ( 1 - \theta ) + k _ { 3 } \theta \right\}
C) iF=F{k1(1θ)k2θ(1θ)k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) - k _ { 3 } \theta \right\}
D) iF=F{k1(1θ)k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) - k _ { 3 } \theta \right\}
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the expression for dθdE\frac { d \theta } { d E }
is given by

A) dθdE=b1k1dc(1θss)b2k2dcθss(1θss)k1dc+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 { dc } } \theta _ { ss } \left( 1 - \theta _ { s s } \right) } { k _ { 1 { dc } } + k _ { 2 d c} + j \omega \Gamma }
B) dθdE=b1k1dc(1θss)b2k2dcθss(1θss)k1dc+k2dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 { dc } } \theta _ { ss } \left( 1 - \theta _ { s s } \right) } { k _ { 1 dc } + k _ { 2 d c} + k _ { 3 } + j \omega \Gamma }
C) dθdE=b1k1dc(1θss)k1dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss} \right) } { k _ { 1dc } + k _ { 3 } + j \omega \Gamma }
D) dθdE=b1k1dc(1θss)b2k2dcθssk1dc+k2dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 dc } \theta _ { s s } } { k _ { 1 dc } + k _ { 2 dc } + k _ { 3 } + j \omega \Gamma }
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same mechanism, the charge transfer resistance (Rt) is given by

A) (Rt)1=F{b1k1dc(1θss)b2k2dc(1θss)θss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss } \right) - b _ { 2 } k _ { 2 dc } \left( 1 - \theta _ { s s } \right) \theta _ { s s } \right\}
B) (Rt)1=F{b1k1dc(1θss)+b2k2dc(1θss)θss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 dc} \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2dc } \left( 1 - \theta _ { s s } \right) \theta _ { s s } \right\}
C) (Rt)1=F{b1k1dc(1θss)+b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) + b _ { 2 } k _ { 2 dc } \theta _ { s s } \right\}
D) (Rt)1=F(b1k1dc(1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 dc } \theta _ { s s } \right\}
Question
Consider the reaction Consider the reaction   -If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____<div style=padding-top: 35px>
-If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
Question
Consider the reaction Consider the reaction   -For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____<div style=padding-top: 35px>
-For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
Question
Consider the reaction Consider the reaction   -The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______<div style=padding-top: 35px>
-The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
Question
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-Choose the mechanism(s), which, for appropriate values of kinetic parameters and dc potentials, can yield negative differential impedance.

A) MMads++eMads+Mads2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds} ^ { + } \rightarrow M _ { a d s} ^ { 2 + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { so l } ^ { 2 + }\end{array}
B) Psolk1k1Qsol+eP _ { s ol } \stackrel { k _ { 1 } } { \underset { k _ { - 1 } } { \rightleftarrows } } Q _ { s o l } + e ^ { - }
C) MMads++eMads+Msol 2++e\begin{array} { l } M \rightarrow M _ { ad s } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { \text {sol } } ^ { 2 + } + e ^ { - }\end{array}
D) Psolk1k1Qsol+eAsolk2k2Aadc+e\begin{array} { l } P _ { s o l } \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d c } + e ^ { - } \\\end{array}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/53
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Mechanistic Analysis
1
Consider an elementary reaction Msol3++3ek1k1MM _ { s o l } ^ { 3 + }+ 3 e ^ { - } \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M



where M is a metal and
Msol3+M _ { s o l } ^ { 3 + }
is metal ion in solution. F denotes faraday constant. The net faradaic current density due to metal deposition is given by

A) Fk1[Msol3+]F k _ { 1 } \left[ M _ { s o l } ^ { 3 + } \right]
B) F{k1[Msal3+]k1}F \left\{ k _ { 1 } \left[ M _ { s a l } ^ { 3 + } \right] - k _ { - 1 } \right\}
C) 3F(k1[Msol3+]+k1)3 F \left( k _ { 1 } \left[ M _ { s o l } ^ { 3 + } \right] + k _ { - 1 } \right)
D) 3F{k1[Msal3+]k1}3 F \left\{ k _ { 1 } \left[ M _ { s a l } ^ { 3 + } \right] - k _ { - 1 } \right\}
3F{k1[Msal3+]k1}3 F \left\{ k _ { 1 } \left[ M _ { s a l } ^ { 3 + } \right] - k _ { - 1 } \right\}
2
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mat+M _ { a t } ^ { + }
is described by

A) Γdθdt=k1(1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
B) Γdθdt=k1(1θ)k1θk2θ+k2(1θ)CM2ad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { 2a d } ^ { 2 + } }
C) Γdθdt=k1(1θ)k1θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta
D) Γdθdt=k1(1θ)k1θk2θ+k2CMsa2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { s a } ^ { 2+ } }
Γdθdt=k1(1θ)k1θk2θ+k2(1θ)CM2ad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { 2a d } ^ { 2 + } }
3
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the steady-state fractional surface coverage of the intermediate is given by

A) θss=k1dck1dc˙+k2\theta _ { ss } = \frac { k _ { 1 { dc} } } { k _ { 1 \dot {dc } } + k _ { 2 } }
B) θss=k1dck1dc˙+k1dc˙+k2+k2\theta _ { s s } = \frac { k _ { 1 d c } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } }
C) θss=k1dc+k2CMsol+2k1dc+k1dc+k2+k2CMsol+2\theta_{ss}=\frac{k_{1 d c}+k_{-2} C_{M^{+2}_{sol}}}{k_{1 d c}+k_{-1 d c}+k_{2}+k_{-2} C_{M^{+2}_{sol}} }
D) θss=k1dc˙k1dc˙k1dc˙+k1dc˙+k2+k2CM2ai2+\theta _ { ss } = \frac { k _ { 1 \dot { dc } } - k _ { - 1 \dot { dc } } } { k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } C _ { M _ { 2a i } ^ { 2+ } } }
θss=k1dc+k2CMsol+2k1dc+k1dc+k2+k2CMsol+2\theta_{ss}=\frac{k_{1 d c}+k_{-2} C_{M^{+2}_{sol}}}{k_{1 d c}+k_{-1 d c}+k_{2}+k_{-2} C_{M^{+2}_{sol}} }
4
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the faradaic current is given by

A) iF=F[k1(1θ)]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) \right]
B) iF=F[k1(1θ)k1θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta \right]
C) iF=F[k1(1θ)+k1θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { - 1 } \theta \right]
D) iF=F[k1(1θ)k1θk2θ]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta \right]
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
5
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the value of dθdE\frac { d \theta } { d E }
is given by

A) (b1k1ak(1θss)b1k1akθss)(k1dak+k1ak+k2+k2CM2a2+jωΓ)\frac{\left(b_{1} k_{1 ak}\left(1-\theta_{s s}\right)-b_{-1} k_{-1ak} \theta_{ss}\right)}{\left(k_{1 dak}+k_{-1 ak}+k_{2}+k_{-2} C_{M_{2a}^{2}}+j \omega \Gamma\right)}
B) (b1k1dc˙b1k1dc˙)(k1dc˙+k1dc˙+k2+k2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 \dot {dc } } - b _ { - 1 } k _ { - 1 \dot {dc } } \right) } { \left( k _ { 1 \dot { dc} } + k _ { - 1 \dot { dc } } + k _ { 2 } + k _ { - 2 } + j \omega \Gamma \right) }
C) (b1k1d˙b1k1α˙)(k1α˙+k1k˙+k2+jΓΓ)\frac { \left( b _ { 1 } k _ { 1 \dot { d } } - b _ { - 1 } k _ { - 1 \dot { \alpha } } \right) } { \left( k _ { 1 \dot { \alpha } } + k _ { - 1 \dot { k } } + k _ { 2 } + j \Gamma \Gamma \right) }
D) (b1k1dc˙)(k1dc˙+k1dc˙+k2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 \dot { dc } } \right) } { \left( k _ { 1 \dot { dc} } + k _ { - 1 \dot { dc } } + k _ { 2 } + j \omega \Gamma \right) }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
6
Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .

-In the same mechanism, the faradaic impedance (ZF) is given by

A) (ZF)1=F(b1k1dc˙(1θss)b1k1α˙θss+(k1dc˙+k1dc˙+k2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 \dot { dc } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { \alpha } } \theta _ { ss } + \left( k _ { 1 \dot { dc } } + k _ { - 1 \dot { dc } } + k _ { 2 } \right) \frac { d \theta } { d E } \right)
B) (ZF)1=F(b1k1dc˙(1θss)b1k1˙θss(k1dc˙+k1dc˙+k2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d \dot { c } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { } } \theta _ { s s } - \left( k _ { 1 \dot { dc } } + k _ { - 1 \dot {dc } } + k _ { 2 } \right) \frac { d \theta } { d E } \right)
C) (ZF)1=F(b1k1dc˙(1θss)b1k1dc˙θss(k1dc˙+k1dc˙)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 \dot { dc } } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot {dc } } \theta _ { s s } - \left( k _ { 1 d \dot {c } } + k _ { - 1 \dot { dc } } \right) \frac { d \theta } { d E } \right)
D) (ZF)1=F(b1k1dc˙(1θss)b1k1dc˙θss+(k1dc˙+k1dc˙)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d \dot { c} } \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 \dot { dc } } \theta _ { ss } + \left( k _ { 1 d \dot { c} } + k _ { - 1 d \dot {c } } \right) \frac { d \theta } { d E } \right)
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
7
Consider a reaction given by  Consider a reaction given by   .  -In the above reaction, the rate constants are given by  k _ { i } = k _ { i 0 } e ^ { b ^ { \prime } E }  where E is measured wrt equilibrium potential. Given that k<sub>10</sub> = 10<sup>-7</sup> mol cm<sup>-2</sup> s<sup>-1</sup>, b<sub>1</sub> = 20 V<sup>-1</sup>, b<sub>-1</sub> = -18 V<sup>-1 </sup> , k<sub>2</sub> = 10<sup>-5</sup> mol cm<sup>-2</sup> s<sup>-1</sup>, k<sub>-2</sub> = 10<sup>0</sup> cm s<sup>-1</sup> and the concentration of  M _ { s o l } ^ { 2 + }  as 25 mM, determine (i) k<sub>-10</sub> = ___________ mol cm<sup>-2 </sup> s<sup>-1</sup> . At E = 0.3 V vs. Equilibrium. potential, (ii) value of k<sub>1dc</sub> = ___________mol cm<sup>-2</sup> s<sup>-1</sup>, (iii) k<sub>-1dc</sub> = ___________mol cm<sup>-2</sup> s<sup>-1</sup>, (iv) steady state fractional surface coverage of the intermediate is _______ Remember that 1 M = 1 mol/lit = 10<sup>-3</sup> mol/ cm<sup>3</sup>. .

-In the above reaction, the rate constants are given by
ki=ki0ebEk _ { i } = k _ { i 0 } e ^ { b ^ { \prime } E }
where E is measured wrt equilibrium potential. Given that k10 = 10-7 mol cm-2 s-1, b1 = 20 V-1, b-1 = -18 V-1 , k2 = 10-5 mol cm-2 s-1, k-2 = 100 cm s-1 and the concentration of
Msol2+M _ { s o l } ^ { 2 + }
as 25 mM, determine (i) k-10 = ___________ mol cm-2 s-1 . At E = 0.3 V vs. "Equilibrium. potential", (ii) value of k1dc = ___________mol cm-2 s-1, (iii) k-1dc = ___________mol cm-2 s-1, (iv) steady state fractional surface coverage of the intermediate is _______
Remember that 1 M = 1 mol/lit = 10-3 mol/ cm3.
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
8
When kinetics is rate-limiting, the faradaic impedance of a simple electron transfer reaction can be modeled as

A) a simple resistor
B) a simple capacitor
C) a capacitor in parallel with a resistor
D) none of the above
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
9
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-The equation for fractional surface coverage of Aads is given by

A) k2dc˙k2kdc˙+k2dc˙+k1dc˙\frac { k _ { 2 \dot { dc } } } { k _ { 2 k \dot { dc } } + k _ { - 2 \dot { dc } } + k _ { 1 \dot { dc } } }
B) k2dck2dc+k2dc˙\frac { k _ { 2 dc } } { k _ { 2dc } + k _ { - 2 \dot {dc } } }
C) k2dcCAsolk2dcCAsol+k2dc+k1dcCPsol\frac{k_{2 dc} C_{\mathcal{A}^-_{\mathrm{sol}}}}{k_{2 dc} C_{A^-_{sol}}+k_{-2 d c}+k_{1 d c} C_{P_{sol}}}

D) k2dcCAsolk2dcCAsol+k2dc\frac{k_{2 dc} C_{A^-_{sol}}}{k_{2 dc} C_{A^-_{sol}}+k_{-2dc}}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
10
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-At Edc = 0.25 V vs. OCP, the value of fractional surface coverage of Aads is given by,
θ\theta ss = _________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
11
Consider the reaction Psak1Qsa+eAsilk2k2Aαij+e\begin{array} { l } P _ { s a } \stackrel { k _ { 1 } } { \longrightarrow } Q _ { s a } + e ^ { - } \\A _ { s i l } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { \alpha i j } + e ^ { - } \\\end{array}
The kinetic parameters are given by k10 = 10-5 cm s-1, b1 = 20 V-1, k20 = 10-6 cm s-1, b2 = 20 V-1, k-20 =10-6 mol cm-2 s-1 , b-2 = -18 V-1 and Γ\varGamma = 10-8 mol cm-2. Solution species concentrations are given by [Psol] = [Qsol] =[
AsolA _ { s o l } ^ { - } ] = 100 mM.

-At the same potential (Edc = 0.25 V vs. OCP), the total Faradaic current is given by,
iF-dc = ______________ mA cm-2
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
12
The polarization plot of an electrochemical system is given below.
<strong>The polarization plot of an electrochemical system is given below.   -If an impedance spectrum is acquired at E<sub>dc</sub> = 0.7 V vs. OCP, then the polarization resistance is expected to be.</strong> A) negative B) positive C) can be either negative or positive D) zero.
-If an impedance spectrum is acquired at Edc = 0.7 V vs. OCP, then the polarization resistance is expected to be.

A) negative
B) positive
C) can be either negative or positive
D) zero.
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
13
The polarization plot of an electrochemical system is given below.
<strong>The polarization plot of an electrochemical system is given below.   -In the same system, if an impedance spectrum is acquired at E<sub>dc</sub> = 1.2 V vs. OCP, then the polarization resistance is expected to be.</strong> A) negative B) positive C) can be either negative or positive D) zero.
-In the same system, if an impedance spectrum is acquired at Edc = 1.2 V vs. OCP, then the polarization resistance is expected to be.

A) negative
B) positive
C) can be either negative or positive
D) zero.
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
14
Consider the reaction
Mk1k1Mads++eMads++Mk2Mads++Msol++e\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } + M \stackrel { k _ {2 } } { \longrightarrow } M _ { ads} ^ { + } +M _ { sol } ^ { + } + e ^ { - }\end{array}

The kinetic parameters are given by k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, k-10 = 10-8 mol cm-2 s-1, b-1 = -10 V-1, k20 = 10-8 mol cm-2 s-1, b2 = 10 V-1 and Γ\varGamma = 10-8 mol cm-2.

-At Edc = 0.1 V vs. OCP, the fractional surface coverage of Mads is given by,
θ\theta ss = _________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
15
Consider the reaction
Mk1k1Mads++eMads++Mk2Mads++Msol++e\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } + M \stackrel { k _ {2 } } { \longrightarrow } M _ { ads} ^ { + } +M _ { sol } ^ { + } + e ^ { - }\end{array}

The kinetic parameters are given by k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, k-10 = 10-8 mol cm-2 s-1, b-1 = -10 V-1, k20 = 10-8 mol cm-2 s-1, b2 = 10 V-1 and Γ\varGamma = 10-8 mol cm-2.

-To model a system with the above mechanism, the minimum number of dc potentials at which EIS data should be taken to avoid an infinite number of solutions is __________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
16
In a kinetic limited electrochemical reaction, the number of loops appearing in the complex plane plot of EIS can be related to the

A) number of steps in the mechanism
B) the number of reacting species
C) the number of product species
D) the number of adsorbed intermediates
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
17
Consider the reaction
Mk1Mads++eMads+k2Msol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s o l } ^ { + }\end{array} . Frumkin isotherm is used to describe the adsorption. The kinetic parameter values are k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, g = 15, β\beta 1 = -0.5 , k20 = 10-8 mol cm-2 s-1, β\beta 2 = +0.5 and Γ\varGamma = 10-8 mol cm-2.

-The maximum number of 'loops' that can appear in complex plane plots is _____________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
18
Consider the reaction
Mk1Mads++eMads+k2Msol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\M _ { a ds } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s o l } ^ { + }\end{array} . Frumkin isotherm is used to describe the adsorption. The kinetic parameter values are k10 = 10-9 mol cm-2 s-1, b1 = 10 V-1, g = 15, β\beta 1 = -0.5 , k20 = 10-8 mol cm-2 s-1, β\beta 2 = +0.5 and Γ\varGamma = 10-8 mol cm-2.

-In the above question, the total number of electrical elements required to model the reaction (i.e., only the Faradaic part, without considering the double-layer capacitor or solution resistance) is ____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
19
An impedance spectrum of an electrochemical reaction could be modeled well by the equivalent circuit given below. The solution resistance was negligible, mass transfer was rapid, and there was not film formation on the surface.
An impedance spectrum of an electrochemical reaction could be modeled well by the equivalent circuit given below. The solution resistance was negligible, mass transfer was rapid, and there was not film formation on the surface.   If a mechanism is proposed to explain the results, what is the minimum number of adsorbed intermediate species necessary to model the data? __________ If a mechanism is proposed to explain the results, what is the minimum number of adsorbed intermediate species necessary to model the data? __________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
20
Choose the mechanism(s), which, for appropriate values of kinetic parameters and dc potentials, can yield negative differential impedance.

A) MMads++eMads+Mads2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { a d s } ^ { 2 + } + e ^ { - } \\\\M _ { a d s } ^ { + } \rightarrow M _ { s o l } ^ { 2 + }\end{array}
B) MMsol++eM \rightarrow M _ { s o l } ^ { + } + e ^ { - }
C) MMads++eMads+Msol 2++e\begin{array} { l } M \rightarrow M _ { a d s } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { \text {sol } } ^ { 2 + } + e ^ { - }\end{array}
D) MMads++eMads++MMads++Msol+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a d s } ^ { + } + M ^ { } \rightarrow M _ { a d s } ^ { + } + M _ { s o l } ^ { + }\end{array}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
21
Consider the following mechanism.
MMads++eMads+Madi2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a d s } ^ { + } \rightarrow M _ { a d i } ^ { 2 + } + e ^ { - } \\\\M _ { a d s} ^ { + } \rightarrow M _ { s o l } ^ { 2 + }\end{array}
The faradaic impedance of this system is to be modeled using the Maxwell type circuit with resistances and capacitances. Apart from polarization resistance, how many Maxwell pairs are necessary to adequately model an impedance spectrum from this system? ________
At how many potentials should EIS be acquired to eliminate the possibility of an infinite number of solutions _________
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
22
A Frumkin isotherm model will reduce to Langmuir isotherm when parameter "g" is _____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
23
Temkin model describes the relationship between _______ and fractional surface coverage

A) rate constant
B) equilibrium constant
C) potential
D) current
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
24
Consider the reaction [Fe(CN)6]4k1[Fe(CN)6]3+e\left[ \mathrm { Fe } ( \mathrm { CN } ) _ { 6 } \right] ^ { 4 - } \underset { k _ { - 1 } } { \longleftarrow } \left[ \mathrm { Fe } ( \mathrm { CN } ) _ { 6 } \right] ^ { 3 - } + e ^ { - }
The net reaction rate is given by

A) k1[Fe2+]k _ { 1 } \left[ F e ^ { 2 + } \right]
B) k1[Fe2+]k1[Fe3+]k _ { 1 } \left[ F e ^ { 2 + } \right] - k _ { - 1 } \left[ F e ^ { 3 + } \right]
C) k1[Fe2+]+k1[Fe3+]k _ { 1 } \left[ F e ^ { 2 + } \right] + k _ { - 1 } \left[ F e ^ { 3 + } \right]
D) none of the above
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
25
The following impedance spectrum was obtained for an electrochemical system.
 <strong>The following impedance spectrum was obtained for an electrochemical system.   Which of the following mechanisms can be considered to describe the electrochemical system?</strong> A)  \begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\ \\ M _ { a ds } ^ { + } + M \stackrel { k _ { 2 } } { \longrightarrow } M _ { a ds } ^ { + } + M _ { s o l } ^ { 2 + } + 2 e ^ { - } \end{array}  B)  \begin{array} { l } M \stackrel { x _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\ \\ M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s d } ^ { 2 + } + M + e ^ { - } \end{array}  C)  \begin{array} { l } M \stackrel { k } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\ \\ M _ { ads } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { ad s } ^ { 2 + } + e ^ { - } \\ \\ M _ { ads } ^ { 2 + }  \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } \end{array}  D)  \begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\ \\ M _ { a ds } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } + e ^ { - } \\ \\ M \stackrel { k _ { 3 } } { \longrightarrow } M _ { so l } ^ { 2 + } + 2 e ^ { - } \end{array}   Which of the following mechanisms can be considered to describe the electrochemical system?

A) Mk1Mads++eMads++Mk2Mads++Msol2++2e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } + M \stackrel { k _ { 2 } } { \longrightarrow } M _ { a ds } ^ { + } + M _ { s o l } ^ { 2 + } + 2 e ^ { - }\end{array}
B) Mx1Mads++eM+Mads+k2Msd2++M+e\begin{array} { l } M \stackrel { x _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { s d } ^ { 2 + } + M + e ^ { - }\end{array}
C) MkMads++eMads+k3Mads2++eMads2+k3Msol2+\begin{array} { l } M \stackrel { k } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\\\M _ { ads } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { ad s } ^ { 2 + } + e ^ { - } \\\\M _ { ads } ^ { 2 + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + }\end{array}
D) Mk1Mads++eMads+k3Msol2++eMk3Msol2++2e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds} ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \stackrel { k _ { 3 } } { \longrightarrow } M _ { s o l } ^ { 2 + } + e ^ { - } \\\\M \stackrel { k _ { 3 } } { \longrightarrow } M _ { so l } ^ { 2 + } + 2 e ^ { - }\end{array}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
26
A unique method of representing impedance spectrum is

A) Voigt representation
B) Maxwell representation
C) Ladder representation
D) Zero-pole representation
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
27
Consider the following elementary reaction Mk1k1Msol2++2eM \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }M _ { s ol } ^ { 2 + } + 2 e ^ { - }

where M is metal and
Msol 2+M _ { \text {sol } } ^ { 2 + }
is metal ion in solution, F denotes Faraday constant. The net faradaic current density due to metal dissolution is

A) 2F(k1[Msd+]k1)2 F \left( k _ { 1 } \left[ M _ { s d } ^ { + } \right] - k _ { - 1 } \right)
B) 2F{k1k1[Msol2+]}2 F \left\{ k _ { 1 } - k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
C) F{k1k1[Msol2+]}F \left\{ k _ { 1 } - k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
D) 2F{k1+k1[Msol2+]}2 F \left\{ k _ { 1 } + k _ { - 1 } \left[ M _ { s o l } ^ { 2 + } \right] \right\}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
28
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mads+M _ { a ds } ^ { + }
is given by

A) Γdθdt=k1(1θ)k2θk2CMad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta - k _ { - 2 } C _ { M _ { a d } ^ { 2 + } }
B) Γdθdt=k1(1θ)k2θ+k2CMsol+2(1θ)\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { sol } ^ { +2} } ( 1 - \theta )
C) Γdθdt=k1(1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
D) Γdθdt=k1(1θ)k2CMsol+2\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 2 } C _ {M_ {sol } ^ { + 2 } }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
29
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the steady-state fractional surface coverage of the intermediate is given by

A) θss=k1dc˙k1dc˙+k2dc\theta _ { s s } = \frac { k _ { 1 \dot { dc } } } { k _ { 1 \dot {dc } } + k _ { 2 dc } }
B) θss=k1dc˙kdc+k2dc˙+k2dc˙\theta _ { s s } = \frac { k _ { 1 \dot {dc } } } { k _ { \mathrm { dc } } + k _ { 2 \dot { dc } } + k _ { - 2 \dot {dc } } }
C) θss=k1dc+k2dcCMsol+2k1dc+k2dc+k2dcCMsol+2\theta _ { s s } = \frac { k _ { 1dc } + k _ { - 2dc } C _ { M _ { sol} ^ {+2} } } { k _ { 1dc } + k _ { 2 dc } + k _ {- 2 dc} C _ { M _ {sol} ^ { +2 }} }
D) θss=k1dck2dcCMsol+2k1dc+k2dc+k2dcCMsol+2\theta _ { s s } = \frac { k _ { 1dc } - k _ { - 2dc} C _ { M _ { s ol } ^ { +2 } } } { k _ { 1 dc} + k _ { 2dc} + k _ { - 2dc } C _ { M _ {sol} ^ { +2 } } }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
30
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the faradaic current is given by

A) iF=F[k1(1θ)]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) \right]
B) iF=F[k1(1θ)+k2θk2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta - k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol} } ^ { +2 } } \right]
C) iF=F[k1(1θ)k2θ+k2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol } } ^ { +2 } } \right]
D) iF=F[k1(1θ)+k2θ+k2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { sol} ^ {{ +2 } } } \right]
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
31
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the value of dθdE\frac { d \theta } { d E }
is given by

A) (b1k1dc(1θss)b2k2dcθss+b2k2dcCMsol+2(1θss)k1dc+k2dc+k2dCMsol+2+j?? \frac {(b_{1}k_{1dc}(1-\theta _ { s s })-{b_{2}k_{2dc}}\theta _ { s s } +b_{-2}{k_{-2dc}C_{M^{+2}_{sol}}(1-\theta _ { s s })}}{k_{1dc}+k_{2dc}+{k_{-2d}C_{M^{+2}_{sol}}+{j??}}}
B) (b1k1dc(1θss)b2k2dcθss)(k1dc+k2dc+k2dcCMsol+2+jωΓ)\frac { \left( b _ { 1 } k _ { 1 dc} \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2{ dc } } \theta _ { ss } \right) } { \left( k _ { 1 { dc } } + k _ { 2 dc } + k _ { - 2 dc } C _ {M _ { s ol { } } ^ { +2 } } + j \omega \Gamma \right) }
C) (b1k1dc(1θss)b2k2dcθss+b2k2dcCMsol+2)(k1dc+k2dc+k2dcCMsol+2+jωΓ)\frac{\left(b_{1} k_{1dc}\left(1-\theta_{s s}\right)-b_{2} k_{2{dc}} \theta_{ss}+b_{-2} k_{-2 {dc}} C_{M_{sol}^{+2}}\right)}{\left(k_{1 {dc}}+k_{2{dc}}+k_{-2 {dc}} C_{M_{{ sol}}^{+2}}+j \omega \Gamma\right)}

D) (b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)k1dc+k2dc+k2dCMsol+2+j?? \frac {(b_{1}k_{1dc}(1-\theta _ { s s })+{b_{2}k_{2dc}}\theta _ { s s } -b_{-2}{k_{-2dc}C_{M^{+2}_{sol}}(1-\theta _ { s s })}}{k_{1dc}+k_{2dc}+{k_{-2d}C_{M^{+2}_{sol}}+{j??}}}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
32
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-In the same mechanism, the faradaic impedance (ZF) is given by iF=F[k1(1θ)+k2θk2(1θ)CMsol+2]i _ { F } = F \left[ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta - k _ { - 2 } ( 1 - \theta ) C _ { M _ { \mathbf { sol } } ^ { +2 } } \right]

A) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) - \left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
B) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) - \left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
C) (ZF)1=F(b1k1dc(1θss)+b2k2dcθss(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 { dc } } \left( 1 - \theta _ { s s } \right) + b _ { 2 } k _ { 2 {dc } } \theta _ { ss } - \left( k _ { 1 { dc } } - k _ { 2 d { c } } + k _ { - 2 { dc } } C _ { M^{+2} _ { { sol } } } \right) \frac { d \theta } { d E } \right)
D) (ZF)1=F(b1k1dc(1θss)+b2k2dcθssb2k2dcCMsol+2(1θss)+(k1dck2dc+k2dcCMsol+2)dθdE)\left( Z _ { F } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2 d { c } } \theta _ { ss } - b _ { - 2 } k _ { - 2 d c } C _ { M _ {sol } ^ { +2 } } \left( 1 - \theta _ { s s } \right) +\left( k _ { 1 d c } - k _ { 2 dc } + k _ { - 2 d c } C _ { M _ {sol} ^ {+ 2 } } \right) \frac { d \theta } { d E } \right)
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
33
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-The complex plane plot of impedance spectra of the above reaction can exhibit at the most ______ loops
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
34
Consider the reaction given by Mk1Mads++eMads+k2k2Msol2++e\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { ads } ^ { + } + e ^ { - } \\\\M _ { a d s} ^ { + } \frac { k _ { 2 } } { \longleftarrow k _ { - 2 } } M _ { s o l } ^ { 2 + } + e ^ { - }\end{array} .

-For the above mechanism, the mid and low-frequency data, in the complex plane plot can exhibit

A) capacitive loop
B) inductive loop
C) Warburg behavior
D) none of the above
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
35
Negative real values of impedance indicate that

A) there is a problem in the measurement
B) when a potential is applied, current flows in the opposite direction
C) when potential is increased, current decreases
D) the phase difference between the potential and current is 180 °
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
36
The polarization plot of an electrochemical system is given below. An impedance spectrum is acquired at some dc bias and shows hidden negative impedance. <strong>The polarization plot of an electrochemical system is given below. An impedance spectrum is acquired at some dc bias and shows hidden negative impedance.   The dc bias at which the spectrum was acquired could be</strong> A) 0.4 V B) 0.8 V C) 1.2 V D) none of the above The dc bias at which the spectrum was acquired could be

A) 0.4 V
B) 0.8 V
C) 1.2 V
D) none of the above
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
37
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-The mass balance equation for fractional surface coverage of Aads is given by

A) Γdθdt=k1[Psd]k1[Qsol]+k2[Asol]k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } \left[ P _ { s d } \right] - k _ { - 1 } \left[ Q _ { s ol } \right] + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] - k _ { - 2 } \theta
B) Γdθdt=k2[Asd](1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 2 } \left[ A _ { s d } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta
C) Γdθdt=k1[Psol](1θ)k1[Qsol]θ+k2[Asol](1θ)k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] \theta + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta
D) Γdθdt=k2[Asol]k2θ\Gamma \frac { d \theta } { d t } = k _ { 2 } \left[ A _ { s ol} ^ { - } \right] - k _ { - 2 } \theta
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
38
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the equation for fractional surface coverage of Aads is given by

A) k2dc[Asd]k1dk˙[Psol]k1[Qsol]+k2dc[Asol]+k2dc\frac { k _ { 2 d c } \left[ A _ { s d } ^ { - } \right] } { k _ { 1 d \dot { k } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2 d c } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 d c } }
B) k1dc[Psol]+k2dc[Asol]k1dc[Psol]]k1[Qsol]k2dc[Asol]+k2dc\frac { k _ { 1 { dc} } \left[ P _ { s o l } \right] + k _ { 2 {dc } } \left[ A _ { sol } ^ { - } \right] } { k _ { 1 { dc } } \left[ P _ { s o l ] } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] k _ { 2 { dc } } \left[ A _ { s ol } ^ { - } \right] + k _ { - 2 { dc } } }
C) k1dc[Psol]k1[Qsol]+k2dc[Asol]k1k˙[Psol]k1[Qsol]+k2dc[Asol]+k2dc\frac { k _ { 1 { dc } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2{ dc } } \left[ A _ { s o l } ^ { - } \right] } { k _ { 1 \dot { k } } \left[ P _ { s o l } \right] - k _ { - 1 } \left[ Q _ { s o l } \right] + k _ { 2{dc } } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 { dc } } }
D) k2dc[Asol]k2dc[Asol]+k2dc\frac { k _ { 2dc } \left[ A _ { s o l } ^ { - } \right] } { k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 dc } }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
39
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the faradaic current is given by

A) iF=F{k1[Psol](1θ)k1[Qsol](1θ)+k2[Asol](1θ)k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] ( 1 - \theta ) + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
B) iF=F{k1[Psol](1θ)k1[Qsol]θ+k2[Asol](1θ)k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { s o l } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] \theta + k _ { 2 } \left[ A _ { s ol } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
C) iF=F{k1[Psol ](1θ)k1[Qsol](1θ)+k2[Asol]k2θ}i _ { F } = F \left\{ k _ { 1 } \left[ P _ { \text {sol } } \right] ( 1 - \theta ) - k _ { - 1 } \left[ Q _ { s o l } \right] ( 1 - \theta ) + k _ { 2 } \left[ A _ { s o l } ^ { - } \right] - k _ { - 2 } \theta \right\}
D) iF=F{k2[Asal](1θ)k2θ}i _ { F } = F \left\{ k _ { 2 } \left[ A _ { s a l } ^ { - } \right] ( 1 - \theta ) - k _ { - 2 } \theta \right\}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
40
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same reaction, the expression for dθdE\frac { d \theta } { d E }
is given by

A) dθdE=b2k2dc[Asol]b2k2dck2dc[Asol]+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2dc } \left[ A _ { so l } ^ { - } \right] - b _ { - 2 } k _ { - 2 dc} } { k _ { 2 dc } \left[ A _ { s ol } ^ { - } \right] + k _ { - 2 { dc} } + j \omega \Gamma }
B) dθdE=b2k2dc[Asol](1θss)b2k2dcθssk2dc[Asol](1θss)+k2dcθss+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2 dc } \left[ A _ { s ol } ^ { - } \right] \left( 1 - \theta _ { ss } \right) - b _ { - 2 } k _ { - 2 dc } \theta _ { s s } } { k _ { 2 d c} \left[ A _ { so l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) + k _ { - 2 dc } \theta _ { ss } + j \omega \Gamma }
C) dθdE=b2k2dc[Asol](1θss)b2k2dcθssk2dc[Asol]+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2dc } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 dc } \theta _ { s s } } { k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] + k _ { - 2 dc } + j \omega \Gamma }
D) dθdE=b2k2dc[Asol]b2k2dck2d˙[Asol](1θss)+k2dcθss+jωΓ\frac { d \theta } { d E } = \frac { b _ { 2 } k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] - b _ { - 2 } k _ { - 2 d c } } { k _ { 2 d \dot { } } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) + k _ { - 2 d c } \theta _ { s s} + j \omega \Gamma }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
41
Consider the reaction Psolk1k1Qsol+eAsolk2k2Aads+e\begin{array} { l } P _ { s o l }\underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } }Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d s } + e ^ { - } \\\end{array}


-In the same mechanism, the charge transfer resistance (Rt) is given by

A) (Rt)1=F{b1k1dc[Psol](1θss)b1k1dc[Qsol](1θss)}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 { d c} } \left[ P _ { s o l } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 { dc } } \left[ Q _ { s o l } \right] \left( 1 - \theta _ { s s } \right) \right\}
B) (Rt)1=F{b1k1dc[Psol](1θss)b1k1dc[Qsol](1θss)+b2k2dc[Asol](1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ \begin{array} { l } b _ { 1 } k _ { 1 dc } \left[ P _ { so l } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 1 } k _ { - 1 { dc} } \left[ Q _ { s o l } \right] \left( 1 - \theta _ { ss} \right) \\+ b _ { 2 } k _ { 2 { dc } } \left[ A _ { s o l } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 { dc } } \theta _ { s s }\end{array} \right\}
C) (Rt)1=F{b1k1dc[Psol]b1k1dc[Qsol]+b2k2dc[Asol]b2k2dc}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 d c} \left[ P _ { s ol } \right] - b _ { - 1 } k _ { - 1 dc} \left[ Q _ { s o l } \right] + b _ { 2 } k _ { 2 dc } \left[ A _ { s o l } ^ { - } \right] - b _ { - 2 } k _ { - 2 d c } \right\}
D) (Rt)1=F{b2k2dc[Asol](1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 2 } k _ { 2 { dc} } \left[ A _ { s ol } ^ { - } \right] \left( 1 - \theta _ { s s } \right) - b _ { - 2 } k _ { - 2 { dc} } \theta _ { ss } \right\}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
42
Consider the reaction Consider the reaction   -If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
-If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
43
Consider the reaction Consider the reaction   -For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
-For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
44
Consider the reaction Consider the reaction   -The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
-The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
45
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-The mass balance equation for fractional surface coverage of Mads+M _ { a d s} ^ { + }
is given by

A) Γdθdt=k1(1θ)k2θ(1θ)+k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) + k _ { 3 } \theta
B) Γdθdt=k1(1θ)k2θ(1θ)\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta )
C) Γdθdt=k1(1θ)k2θ(1θ)k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) - k _ { 3 } \theta
D) Γdθdt=k1(1θ)k3θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 3 } \theta
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
46
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the equation for fractional surface coverage of Aads is given by

A) k1dck1dc+k2dc+k3dc\frac { k _ { 1 { dc } } } { k _ { 1 { dc} } + k _ { 2 dc } + k _ { 3 {dc } } }
B) k1dck1dc+k3dc\frac { k _ { 1 d c } } { k _ { 1 dc} + k _ { 3 d c } }
C) k3dck1dc+k2d˙+k3dc\frac { k _ { 3 { dc } } } { k _ { 1 { dc } } + k _ { 2 d \dot { } } + k _ { 3 { dc } } }
D) k3dck1dc+k3dc\frac { k _ { 3 { dc } } } { k _ { 1 {dc } } + k _ { 3 d c} }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
47
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the faradaic current is given by

A) iF=F{k1(1θ)+k2θ(1θ)}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta ( 1 - \theta ) \right\}
B) iF=F{k1(1θ)+k2θ(1θ)+k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) + k _ { 2 } \theta ( 1 - \theta ) + k _ { 3 } \theta \right\}
C) iF=F{k1(1θ)k2θ(1θ)k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta ( 1 - \theta ) - k _ { 3 } \theta \right\}
D) iF=F{k1(1θ)k3θ}i _ { F } = F \left\{ k _ { 1 } ( 1 - \theta ) - k _ { 3 } \theta \right\}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
48
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same reaction, the expression for dθdE\frac { d \theta } { d E }
is given by

A) dθdE=b1k1dc(1θss)b2k2dcθss(1θss)k1dc+k2dc+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 { dc } } \theta _ { ss } \left( 1 - \theta _ { s s } \right) } { k _ { 1 { dc } } + k _ { 2 d c} + j \omega \Gamma }
B) dθdE=b1k1dc(1θss)b2k2dcθss(1θss)k1dc+k2dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 { dc } } \theta _ { ss } \left( 1 - \theta _ { s s } \right) } { k _ { 1 dc } + k _ { 2 d c} + k _ { 3 } + j \omega \Gamma }
C) dθdE=b1k1dc(1θss)k1dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss} \right) } { k _ { 1dc } + k _ { 3 } + j \omega \Gamma }
D) dθdE=b1k1dc(1θss)b2k2dcθssk1dc+k2dc+k3+jωΓ\frac { d \theta } { d E } = \frac { b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 dc } \theta _ { s s } } { k _ { 1 dc } + k _ { 2 dc } + k _ { 3 } + j \omega \Gamma }
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
49
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-In the same mechanism, the charge transfer resistance (Rt) is given by

A) (Rt)1=F{b1k1dc(1θss)b2k2dc(1θss)θss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 dc } \left( 1 - \theta _ { ss } \right) - b _ { 2 } k _ { 2 dc } \left( 1 - \theta _ { s s } \right) \theta _ { s s } \right\}
B) (Rt)1=F{b1k1dc(1θss)+b2k2dc(1θss)θss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 dc} \left( 1 - \theta _ { ss } \right) + b _ { 2 } k _ { 2dc } \left( 1 - \theta _ { s s } \right) \theta _ { s s } \right\}
C) (Rt)1=F{b1k1dc(1θss)+b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left\{ b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) + b _ { 2 } k _ { 2 dc } \theta _ { s s } \right\}
D) (Rt)1=F(b1k1dc(1θss)b2k2dcθss}\left( R _ { t } \right) ^ { - 1 } = F \left( b _ { 1 } k _ { 1 d c } \left( 1 - \theta _ { s s } \right) - b _ { 2 } k _ { 2 dc } \theta _ { s s } \right\}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
50
Consider the reaction Consider the reaction   -If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
-If EIS is acquired for the above mechanism, the maximum number of loops that can manifest in a complex plane plot is _____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
51
Consider the reaction Consider the reaction   -For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
-For the above mechanism, the number of electrical elements (including polarization resistance) required to model the Faradaic impedance is _____
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
52
Consider the reaction Consider the reaction   -The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
-The minimum number of dc potentials at which EIS must be acquired to avoid an infinite number of solutions is ______
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
53
Consider the reaction Mk1Mads++eM+Mads+k2Mads++Msol++eMads+ksMsol+\begin{array} { l } M \stackrel { k _ { 1 } } { \longrightarrow } M _ { a ds } ^ { + } + e ^ { - } \\M + M _ { a d s } ^ { + } \stackrel { k _ { 2 } } { \longrightarrow } M _ { a d s } ^ { + } + M _ { s o l } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + } \stackrel { k _ { s } } { \longrightarrow } M _ { s o l } ^ { + }\end{array}

-Choose the mechanism(s), which, for appropriate values of kinetic parameters and dc potentials, can yield negative differential impedance.

A) MMads++eMads+Mads2++eMads+Msol2+\begin{array} { l } M \rightarrow M _ { a ds } ^ { + } + e ^ { - } \\\\M _ { a ds} ^ { + } \rightarrow M _ { a d s} ^ { 2 + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { so l } ^ { 2 + }\end{array}
B) Psolk1k1Qsol+eP _ { s ol } \stackrel { k _ { 1 } } { \underset { k _ { - 1 } } { \rightleftarrows } } Q _ { s o l } + e ^ { - }
C) MMads++eMads+Msol 2++e\begin{array} { l } M \rightarrow M _ { ad s } ^ { + } + e ^ { - } \\\\M _ { a ds } ^ { + } \rightarrow M _ { \text {sol } } ^ { 2 + } + e ^ { - }\end{array}
D) Psolk1k1Qsol+eAsolk2k2Aadc+e\begin{array} { l } P _ { s o l } \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } Q _ { - s o l } + e ^ { - } \\A _ { s ol } ^ { - } \underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } A _ { a d c } + e ^ { - } \\\end{array}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 53 flashcards in this deck.