Deck 1: The Nature of Econometrics

Full screen (f)
exit full mode
Question
Given Yi5.5Xi3.5141.2102.3117.8\begin{array} { c c } \frac { \mathrm { Yi } } { 5.5 } & \frac { \mathrm { Xi } } { 3.5 } \\14 & - 1.2 \\- 10 & - 2.3 \\11 & 7.8\end{array}
Yi = β^0\hat { \beta } _ { 0 } - β^1\hat { \beta } _ { 1 }
Xi + ei β^0\hat { \beta } _ { 0 } = 2.97
β^1\hat { \beta } _ { 1 } = 1.10
Calculate the value of the four ei's.
Show your work making the details of your calculations apparent."
Use Space or
up arrow
down arrow
to flip the card.
Question
Yi=45.3316.20Xi+ei (9.14) (14.27) standard errors  SER =45.03Yˉ=75.01r2=0.77n=44\begin{array} { |l| } \hline\mathrm { Y } _ { \mathrm { i } } = 45.33 - 16.20 \mathrm { X } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } } \\\text { (9.14) } ( 14.27 ) \leftarrow \text { standard errors } \\\text { SER } = 45.03 \quad \bar { Y } = 75.01 \quad \mathrm { r } ^ { 2 } = 0.77 \quad \mathrm { n } = 44 \\\hline\end{array}

A) Interpret the structural parameters of the regression in the box above.
B) How many observations were used to estimate the structural parameters?
C) What is the estimated distance of an observation from the population regression line on average?
D) Interpret the standard error of the constant term.
E) If the structural parameters of this regression were re-calculated using a fresh set of data, would you be surprised if turned out to be -29.00? Explain.
F) According to the SER, is the fit of this regression line adequate? Explain.
Question
Answer any 5 of the following A through F:

A) Briefly explain in words how diplomatic parking fines can be used to predict the level of corruption in a nation. Also, write the econometric model used to make this prediction.
B) Define psychometrics.
C) Explain why minimizing the squared error terms is the premier method for fitting a line between observations considering that other options are available.
D) Give 3 distinct reasons why a student may not reduce their study time given the information in the box on the right. GPAi=3.1+0.02STi+ei\mathrm { GPA } _ { \mathrm { i } } = 3.1 + 0.02 \mathrm { ST } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } }
(0.14) (0.08) \leftarrow standard errors
where GPA is grade point average
ST is hours of study time on a typical day.
r2=0.0002n=289\mathrm { r } ^ { 2 } = 0.0002 \quad \mathrm { n } = 289
E) Prove
Σ(XiXˉ)2=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F.
F. Prove
Σ(YiYˉ)=0\Sigma \left( Y _ { i } - \bar { Y } \right) = 0
Question
If r2 = 0.77, then 33% of the variation in Y is explained by variables other than the one in the regression.
Question
In some instances, a regression with r2 = .002 can be considered a good fit.
Question
Unless all the observations lie on a straight line, it is impossible to fit a line such that ei2\sum e _ { i } ^ { 2 } = 0.
Question
Regression analysis and ordinary least-squares are the same method.
Question
Σ(Yiβ^0β^1Xi)2β^0\frac { \partial \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ^ { 2 } } { \partial \hat { \beta } _ { 0 } } = 2Σ(Yiβ^0β^1Xi)(1)2 \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ( - 1 )
Question
Σ(XiXˉ)(YiYˉ)=ΣYiXiYˉΣXi\Sigma \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } X _ { i } - \bar { Y } \Sigma X _ { i }
Question
Equation 4 below is for the SER2.
Question
Equation 2 below is similar to the equation for β^1\hat { \beta } _ { 1 }
, but not 100% correct.
Question
Equation 3 below is the standard error of β^1\hat { \beta } _ { 1 }
Question
Equation 1 below is similar to the equation for r2, but not 100% correct.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/13
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: The Nature of Econometrics
1
Given Yi5.5Xi3.5141.2102.3117.8\begin{array} { c c } \frac { \mathrm { Yi } } { 5.5 } & \frac { \mathrm { Xi } } { 3.5 } \\14 & - 1.2 \\- 10 & - 2.3 \\11 & 7.8\end{array}
Yi = β^0\hat { \beta } _ { 0 } - β^1\hat { \beta } _ { 1 }
Xi + ei β^0\hat { \beta } _ { 0 } = 2.97
β^1\hat { \beta } _ { 1 } = 1.10
Calculate the value of the four ei's.
Show your work making the details of your calculations apparent."
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 5.5 - (2.97 + (1.10 x 3.5)) = -1.33 (6.38)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 14 - (2.97 + (-1.10 x -1.2)) = 12.35 (9.71)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta} _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = -10 - (2.97 + (-1.10 x -2.3)) = -10.44 (-15.50)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 11 - (2.97 + (-1.10 x 7.8)) = -0.58 (16.61)
2
Yi=45.3316.20Xi+ei (9.14) (14.27) standard errors  SER =45.03Yˉ=75.01r2=0.77n=44\begin{array} { |l| } \hline\mathrm { Y } _ { \mathrm { i } } = 45.33 - 16.20 \mathrm { X } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } } \\\text { (9.14) } ( 14.27 ) \leftarrow \text { standard errors } \\\text { SER } = 45.03 \quad \bar { Y } = 75.01 \quad \mathrm { r } ^ { 2 } = 0.77 \quad \mathrm { n } = 44 \\\hline\end{array}

A) Interpret the structural parameters of the regression in the box above.
B) How many observations were used to estimate the structural parameters?
C) What is the estimated distance of an observation from the population regression line on average?
D) Interpret the standard error of the constant term.
E) If the structural parameters of this regression were re-calculated using a fresh set of data, would you be surprised if turned out to be -29.00? Explain.
F) According to the SER, is the fit of this regression line adequate? Explain.
A)If X=0, then Y is expected to = 45.33
If X↑ 1 unti,then Y is expected to↓ 16.20 units
B)44
C) 45.03
D) In repeated sampling β^0\hat { \beta } _ { 0 } typically varies by 9.14
E) No, since (-16.20 - 14.27) < -29.00
F)The fit is not adequate since SER > ½ Y-bar
3
Answer any 5 of the following A through F:

A) Briefly explain in words how diplomatic parking fines can be used to predict the level of corruption in a nation. Also, write the econometric model used to make this prediction.
B) Define psychometrics.
C) Explain why minimizing the squared error terms is the premier method for fitting a line between observations considering that other options are available.
D) Give 3 distinct reasons why a student may not reduce their study time given the information in the box on the right. GPAi=3.1+0.02STi+ei\mathrm { GPA } _ { \mathrm { i } } = 3.1 + 0.02 \mathrm { ST } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } }
(0.14) (0.08) \leftarrow standard errors
where GPA is grade point average
ST is hours of study time on a typical day.
r2=0.0002n=289\mathrm { r } ^ { 2 } = 0.0002 \quad \mathrm { n } = 289
E) Prove
Σ(XiXˉ)2=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F.
F. Prove
Σ(YiYˉ)=0\Sigma \left( Y _ { i } - \bar { Y } \right) = 0
A) When diplomats rack up parking fines and don't pay them it may be a marker for the level of corruption in their home country. Diplomats from corrupt countries rack up more parking fines than those from less corrupt countries.
Level of Corruptioni = β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } unpaid parking fines per diplomati + ei
B) The empirical determination of psychological laws.
C) This technique yields 1) a unique line that has 2) desirable statistical qualities.
D) 1) The variables may be poorly measured.
2) Other factors aside from study time may come into play.
3) These results are for typical students and I'm not typical.
E) Σ(XiXˉ)2=Σ(XiXˉ)(XiXˉ)=ΣXi2XˉΣXiXˉΣXi+nXˉ2=ΣXi2XˉΣXi=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma \left( X _ { i } - \bar { X } \right) \left( X _ { i } - \bar { X } \right) = \Sigma X _ { i } { } ^ { 2 } - \bar { X } \Sigma X _ { i } - \bar { X } \Sigma X _ { i } + n \bar { X } ^ { 2 } = \Sigma X _ { i } ^ { 2 } - \bar { X } \Sigma X _ { i } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F) Σ(YiYˉ)=ΣYiΣYˉ=nYˉnYˉ=0\Sigma \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } - \Sigma \bar { Y } = n \bar { Y } - n \bar { Y } = 0
4
If r2 = 0.77, then 33% of the variation in Y is explained by variables other than the one in the regression.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
5
In some instances, a regression with r2 = .002 can be considered a good fit.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
6
Unless all the observations lie on a straight line, it is impossible to fit a line such that ei2\sum e _ { i } ^ { 2 } = 0.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
7
Regression analysis and ordinary least-squares are the same method.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
8
Σ(Yiβ^0β^1Xi)2β^0\frac { \partial \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ^ { 2 } } { \partial \hat { \beta } _ { 0 } } = 2Σ(Yiβ^0β^1Xi)(1)2 \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ( - 1 )
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
9
Σ(XiXˉ)(YiYˉ)=ΣYiXiYˉΣXi\Sigma \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } X _ { i } - \bar { Y } \Sigma X _ { i }
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
10
Equation 4 below is for the SER2.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
11
Equation 2 below is similar to the equation for β^1\hat { \beta } _ { 1 }
, but not 100% correct.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
12
Equation 3 below is the standard error of β^1\hat { \beta } _ { 1 }
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
13
Equation 1 below is similar to the equation for r2, but not 100% correct.
Unlock Deck
Unlock for access to all 13 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 13 flashcards in this deck.