Deck 17: Electric Potential

Full screen (f)
exit full mode
Question
The potential energy of a 3.5pC3.5 \mathrm{pC} charge separated by 6.2 cm6.2 \mathrm{~cm} from a 1.6μC1.6 \mu \mathrm{C} charge is

A) 1.2×105 J1.2 \times 10^{-5} \mathrm{~J} .
B) 8.1×105 J8.1 \times 10^{-5} \mathrm{~J} .
C) 8.1×107 J8.1 \times 10^{-7} \mathrm{~J} .
D) 1.0×105 J1.0 \times 10^{-5} \mathrm{~J} .
E) 1.3×107 J1.3 \times 10^{-7} \mathrm{~J} .
Use Space or
up arrow
down arrow
to flip the card.
Question
What is the distance between a 2.00μC-2.00 \mu \mathrm{C} charge and a 3.00μC-3.00 \mu \mathrm{C} charge if their potential energy is 0.491 J0.491 \mathrm{~J} ?

A) 25.0 cm25.0 \mathrm{~cm}
B) 11.0 cm11.0 \mathrm{~cm}
C) 3.14 cm3.14 \mathrm{~cm}
D) 15.5 cm15.5 \mathrm{~cm}
E) 0.911 cm0.911 \mathrm{~cm}
Question
The SI unit for electric potential energy is equivalent to

A) Cm2C \cdot m^{2} .
B) Nm2\mathrm{N} \cdot \mathrm{m}^{2} .
C) N/m\mathrm{N} / \mathrm{m} .
D) VC\mathrm{V} \cdot \mathrm{C} .
E) none of these choices are correct
Question
Three point charges, q1,q2\mathrm{q}_{1}, \mathrm{q}_{2} , and q3\mathrm{q}_{3} , are arranged so the potential energy for the pair q1\mathrm{q}_{1} and q2\mathrm{q}_{2} is 0.12 J0.12 \mathrm{~J} and for the pair q2\mathrm{q}_{2} and q3\mathrm{q}_{3} is 0.23 J0.23 \mathrm{~J} . What is the potential energy for the pair q1\mathrm{q}_{1} and q3\mathrm{q}_{3} ?

A) 0.35 J-0.35 \mathrm{~J}
B) 0.35 J0.35 \mathrm{~J}
C) 0.11 J0.11 \mathrm{~J}
D) 0.11 J-0.11 \mathrm{~J}
E) Insufficient information is given for a unique answer
Question
Three point charges, q1,q2q_{1}, q_{2} , and q3q_{3} , are arranged so the potential energy for the pair q1q_{1} and q2q_{2} is 0.12 J0.12 \mathrm{~J} and for the pair q2\mathrm{q}_{2} and q3\mathrm{q}_{3} is 0.23 J0.23 \mathrm{~J} . If the total potential energy of the arrangement is 0.60 J0.60 \mathrm{~J} , what is the potential energy of the pair q1\mathrm{q}_{1} and q3\mathrm{q}_{3} ?

A) 0.95 J0.95 \mathrm{~J}
B) 0.11 J0.11 \mathrm{~J}
C) 0.25 J0.25 \mathrm{~J}
D) 0.35 J0.35 \mathrm{~J}
E) Insufficient information is given for a unique answer
Question
Three point charges, q1=2.0μC,q2=2.0μC\mathrm{q}_{1}=2.0 \mu \mathrm{C}, \mathrm{q}_{2}=2.0 \mu \mathrm{C} , and q3=1.0μC\mathrm{q}_{3}=-1.0 \mu \mathrm{C} , are located at the vertices of an equilateral triangle of side length 30 cm30 \mathrm{~cm} . What is the potential energy of this arrangement?

A) 0.12 J-0.12 \mathrm{~J}
B) 0
C) 0.24 J-0.24 \mathrm{~J}
D) 0.12 J0.12 \mathrm{~J}
E) 0.24 J0.24 \mathrm{~J}
Question
Three point charges, q1,q2q_{1}, q_{2} , and q3q_{3} , are located at the vertices of an equilateral triangle. If q1=q2q_{1}=q_{2} , what value must q3\mathrm{q}_{3} have so that the total potential energy of the arrangement is zero?

A) (q1+q2)/2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right) / 2
B) 0.5q1-0.5 \mathrm{q}_{1}
C) q1\mathrm{q}_{1}
D) 0.5q10.5 \mathrm{q}_{1}
E) no value will have this result
Question
The unit of electric potential, the volt, is equal to a

A) CN\mathrm{C} \cdot \mathrm{N} .
B) J2/C\mathrm{J} 2 / \mathrm{C} .
C) J/C2\mathrm{J} / \mathrm{C} 2 .
D) J/C\mathrm{J} / \mathrm{C} .
E) C2N/s\mathrm{C}^{2} \cdot \mathrm{N} / \mathrm{s} .
Question
A 2.5mC2.5-\mathrm{mC} charge is on the yy -axis at y=3.0 my=3.0 \mathrm{~m} , and a 6.3mC6.3-\mathrm{mC} charge is on the xx -axis at x=3.0 mx=3.0 \mathrm{~m} . What is the direction of the electric potential at the origin?

A) 168168^{\circ}
B) 332332^{\circ}
C) 292292^{\circ}
D) 22.022.0^{\circ}
E) potential has no direction
Question
What is the potential at a distance of 0.0529 nm0.0529 \mathrm{~nm} from a proton?

A) 9.11pC9.11 \mathrm{pC}
B) 27.2 V-27.2 \mathrm{~V}
C) 27.2 V27.2 \mathrm{~V}
D) 13.6 V13.6 \mathrm{~V}
E) 13.6 V-13.6 \mathrm{~V}
Question
A charge q1q_{1} is placed on the yy -axis at y=4.0 my=4.0 \mathrm{~m} and the resulting potential at the position (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) is 3.0 V3.0 \mathrm{~V} . The charge q1\mathrm{q}_{1} is removed and a charge q2\mathrm{q}_{2} is placed on the x\mathrm{x} -axis at x=3.0 m\mathrm{x}=3.0 \mathrm{~m} and the resulting potential at the position (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) is 4.0 V4.0 \mathrm{~V} . If both charges are in place simultaneously, what is the potential at (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) ?

A) 12 V12 \mathrm{~V}
B) 7.0 V7.0 \mathrm{~V}
C) 3.5 V3.5 \mathrm{~V}
D) 1.0 V1.0 \mathrm{~V}
E) 5.0 V5.0 \mathrm{~V}
Question
A 2.00nC2.00 \mathrm{nC} charge is placed on the x\mathrm{x} -axis at x=3.00 cm\mathrm{x}=-3.00 \mathrm{~cm} , another 2.00nC2.00 \mathrm{nC} charge is placed on the x\mathrm{x} -axis at x=3.00 cm\mathrm{x}=3.00 \mathrm{~cm} , and a third 2.00nC2.00 \mathrm{nC} charge is placed on the y\mathrm{y} -axis at y=3.00 cm\mathrm{y}=3.00 \mathrm{~cm} . What is the potential at the origin?

A) 3600 V3600 \mathrm{~V}
B) 108 V108 \mathrm{~V}
C) 5400 V5400 \mathrm{~V}
D) 2700 V2700 \mathrm{~V}
E) 1800 V1800 \mathrm{~V}
Question
A conducting sphere of radius 20 cm20 \mathrm{~cm} is charged to a potential of 1.0×1061.0 \times 106 volts. What is the charge on its surface?

A) 4.7mC4.7 \mathrm{mC}
B) 22μC22 \mu \mathrm{C}
C) 9.0nC9.0 \mathrm{nC}
D) 16mC16 \mathrm{mC}
E) 4.4μC4.4 \mu \mathrm{C}
Question
A conducting sphere of radius 20 cm20 \mathrm{~cm} is charged so that the electric field reaches 3.0×105 V/m3.0 \times 10^{5} \mathrm{~V} / \mathrm{m} at its surface. What is the potential at the surface of the sphere?

A) 6.0×104 V6.0 \times 104 \mathrm{~V}
B) 1.5×104 V1.5 \times 10^{4} \mathrm{~V}
C) 2.7×105 V2.7 \times 10^{5} \mathrm{~V}
D) 3.0×104 V3.0 \times 10^{4} \mathrm{~V}
E) 4.5×104 V4.5 \times 10^{4} \mathrm{~V}
Question
How much charge is on a conducting sphere of diameter 20μm20 \mu \mathrm{m} if its surface potential is 50mV50 \mathrm{mV} ?

A) 56×1018C56 \times 10^{-18} \mathrm{C}
B) 50×1019C50 \times 10^{-19} \mathrm{C}
C) 1.6×1019C1.6 \times 10^{-19} \mathrm{C}
D) 32×1016C32 \times 10^{-16} \mathrm{C}
E) 14×1017C14 \times 10^{-17} \mathrm{C}
Question
If protons are accelerated from rest in a Van de Graff accelerator through a potential difference of 1.00MV1.00 \mathrm{MV} , what is their resulting speed?

A) 3.67×108 m/s3.67 \times 10^{8} \mathrm{~m} / \mathrm{s}
B) 6.92×106 m/s6.92 \times 10^{6} \mathrm{~m} / \mathrm{s}
C) 6.25×107 m/s6.25 \times 10^{7} \mathrm{~m} / \mathrm{s}
D) 1.38×107 m/s1.38 \times 10^{7} \mathrm{~m} / \mathrm{s}
E) 9.79×106 m/s9.79 \times 10^{6} \mathrm{~m} / \mathrm{s}
Question
A helium nucleus is accelerated from rest through a potential difference V\mathrm{V} to a kinetic energy of 3.2×1013 J3.2 \times 10^{-13} \mathrm{~J} . What is V\mathrm{V} ?

A) 2.0MV2.0 \mathrm{MV}
B) 1.6MV1.6 \mathrm{MV}
C) 1.0MV1.0 \mathrm{MV}
D) 0.51MV0.51 \mathrm{MV}
E) 3.2MV3.2 \mathrm{MV}
Question
An air-filled parallel plate capacitor has plates of area 100 cm2100 \mathrm{~cm}^{2} and separation 0.25 mm0.25 \mathrm{~mm} . What is its capacitance?

A) 88μF88 \mu \mathrm{F}
B) 40nF40 \mathrm{nF}
C) 88pF88 \mathrm{pF}
D) 4.4μF4.4 \mu \mathrm{F}
E) 0.35nF0.35 \mathrm{nF}
Question
A parallel plate capacitor has a paper dielectric having dielectric strength 8.0kV/mm8.0 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.0. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.50 mm0.50 \mathrm{~mm} . What is the capacitance?

A) 4.2nF4.2 \mathrm{nF}
B) 5.3nF5.3 \mathrm{nF}
C) 4.2pF4.2 \mathrm{pF}
D) 1.6nF1.6 \mathrm{nF}
E) 16nF16 \mathrm{nF}
Question
If a 0.20pF0.20 \mathrm{pF} capacitor has a voltage of 40mV40 \mathrm{mV} , how many more electrons are on the negative plate than on the positive plate?

A) 5.0×1045.0 \times 104
B) 8.0×10148.0 \times 1014
C) 4.0×1034.0 \times 10^{3}
D) 1.0×1051.0 \times 10^{5}
E) none, the electrons are in equal numbers on the plates
Question
The unit F\mathrm{F} , the farad, is equal to which of the following?

A) C/V\mathrm{C} / \mathrm{V}
B) V/m\mathrm{V} / \mathrm{m}
C) V2/C\mathrm{V} 2 / \mathrm{C}
D) C/V2\mathrm{C} / \mathrm{V} 2
E) V/C\mathrm{V} / \mathrm{C}
Question
A parallel plate capacitor has a paper dielectric having dielectric strength 8.00kV/mm8.00 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.00. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.500 mm0.500 \mathrm{~mm} . If 10.0 V10.0 \mathrm{~V} are applied to this capacitor, what is the charge on the capacitor?

A) 16.0nC16.0 \mathrm{nC}
B) 42.0μC42.0 \mu \mathrm{C}
C) 50.0μC50.0 \mu \mathrm{C}
D) 42.0nC42.0 \mathrm{nC}
E) 159nC159 \mathrm{nC}
Question
What area plates would a 1.0 F1.0 \mathrm{~F} parallel plate capacitor have, with a plate separation of 0.10 mm0.10 \mathrm{~mm} and a dielectric of constant 10 ?

A) 5500 cm25500 \mathrm{~cm}^{2}
B) 130 m2130 \mathrm{~m}^{2}
C) 1.1×106 m21.1 \times 106 \mathrm{~m}^{2}
D) 1000 cm21000 \mathrm{~cm}^{2}
E) 4.4×109 m24.4 \times 10^{9} \mathrm{~m}^{2}
Question
A parallel plate capacitor has a paper dielectric having dielectric strength 8.0kV/mm8.0 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.0. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.50 mm0.50 \mathrm{~mm} . What is the highest voltage that can be applied to this capacitor before breakdown occurs?

A) 4.0×103 V4.0 \times 10^{3} \mathrm{~V}
B) 1.2×104 V1.2 \times 10^{4} \mathrm{~V}
C) 15 V15 \mathrm{~V}
D) 4.0×102 V4.0 \times 10^{2} \mathrm{~V}
E) 1.2×102 V1.2 \times 10^{2} \mathrm{~V}
Question
The electric field in the dielectric-filled region between the plates of a capacitor is E. What is the charge density on the plates?

A) κε0E\kappa \varepsilon_{0} \mathrm{E}
B) EV\mathrm{E} \cdot \mathrm{V}
C) E2ε0\mathrm{E}^{2} \varepsilon_{0}
D) V2E\mathrm{V}^{2} \cdot \mathrm{E}
E) ε0E\varepsilon_{0} \mathrm{E}
Question
The electric potential at a distance dd from a point charge is V\mathrm{V} . At a distance d\mathrm{d} ', the potential is 2 V2 \mathrm{~V} . What is the ratio of electric field at d\mathrm{d} to that at d\mathrm{d} ?

A) more information is necessary
B) 1/41 / 4
C) 2
D) 4
E) 1/21 / 2
Question
A pair of parallel conducting plates have potentials of 17 V-17 \mathrm{~V} and 55 V55 \mathrm{~V} , respectively. An electron is ejected from the plate at potential 17 V-17 \mathrm{~V} and travels to the plate at 55 V55 \mathrm{~V} . What is the speed of the electron as it strikes the 55 V55 \mathrm{~V} plate, assuming it left the 17 V-17 \mathrm{~V} plate starting from rest? The mass of the electron is 9.11×9.11 \times 1031 kg10^{-31} \mathrm{~kg} .

A) 3.6×106 m/s3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}
B) 2.2×106 m/s2.2 \times 10^{6} \mathrm{~m} / \mathrm{s} .
C) 3.1×106 m/s3.1 \times 10^{6} \mathrm{~m} / \mathrm{s}
D) 5.0×106 m/s5.0 \times 10^{6}\mathrm{~m} / \mathrm{s}
Question
The electron is projected horizontally with a speed of 5.0×106 m5.0 \times 10^{6} \mathrm{~m} exactly in the middle of two parallel plates at potentials of 40 V-40 \mathrm{~V} and 104 V104 \mathrm{~V} , respectively. The plate separation is 3.0 cm3.0 \mathrm{~cm} . The plates are long enough that the electron, rather than passing completely between the plates, eventually strikes the plate sitting at 104 V104 \mathrm{~V} potential. What is the speed of the electron when it strikes the plate? The mass of the electron is 9.11×1031 kg9.11 \times 10^{-31} \mathrm{~kg} .

A) 6.0×106 m/s6.0 \times 106 \mathrm{~m} / \mathrm{s}
B) 7.1×106 m/s7.1 \times 106 \mathrm{~m} / \mathrm{s}
C) 8.7×106 m/s8.7 \times 106 \mathrm{~m} / \mathrm{s}
D) 5.0×106 m/s5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}
Question
Which of the following statements is true?

A) If the electric field is zero at a point, then the electric potential is zero at that point also.
B) The electric field is large where the potential is large, and vice versa.
C) If the electric potential is zero at a point, then the electric field is zero at that point also.
D) If the electric potential is zero throughout a region of space, then the electric field is necessarily also zero there.
E) If the electric field is zero throughout a region of space, then the electric potential is necessarily also zero there.
Question
The capacitance of a parallel plate capacitor changes when a dielectric is inserted between the plates. This is mainly due to

A) the polarizability of the material, which sets up an electric field opposite to the applied field, thus reducing the electric field strength in the region.
B) the fact that dielectrics have excess charge that then "shields" the plates from each other, reducing the electric field in the region.
C) the existence of denser matter than air or vacuum, which forms a barrier for electric field lines and reduces the electric field in the region.
D) None of these.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/30
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 17: Electric Potential
1
The potential energy of a 3.5pC3.5 \mathrm{pC} charge separated by 6.2 cm6.2 \mathrm{~cm} from a 1.6μC1.6 \mu \mathrm{C} charge is

A) 1.2×105 J1.2 \times 10^{-5} \mathrm{~J} .
B) 8.1×105 J8.1 \times 10^{-5} \mathrm{~J} .
C) 8.1×107 J8.1 \times 10^{-7} \mathrm{~J} .
D) 1.0×105 J1.0 \times 10^{-5} \mathrm{~J} .
E) 1.3×107 J1.3 \times 10^{-7} \mathrm{~J} .
8.1×107 J8.1 \times 10^{-7} \mathrm{~J} .
2
What is the distance between a 2.00μC-2.00 \mu \mathrm{C} charge and a 3.00μC-3.00 \mu \mathrm{C} charge if their potential energy is 0.491 J0.491 \mathrm{~J} ?

A) 25.0 cm25.0 \mathrm{~cm}
B) 11.0 cm11.0 \mathrm{~cm}
C) 3.14 cm3.14 \mathrm{~cm}
D) 15.5 cm15.5 \mathrm{~cm}
E) 0.911 cm0.911 \mathrm{~cm}
11.0 cm11.0 \mathrm{~cm}
3
The SI unit for electric potential energy is equivalent to

A) Cm2C \cdot m^{2} .
B) Nm2\mathrm{N} \cdot \mathrm{m}^{2} .
C) N/m\mathrm{N} / \mathrm{m} .
D) VC\mathrm{V} \cdot \mathrm{C} .
E) none of these choices are correct
VC\mathrm{V} \cdot \mathrm{C} .
4
Three point charges, q1,q2\mathrm{q}_{1}, \mathrm{q}_{2} , and q3\mathrm{q}_{3} , are arranged so the potential energy for the pair q1\mathrm{q}_{1} and q2\mathrm{q}_{2} is 0.12 J0.12 \mathrm{~J} and for the pair q2\mathrm{q}_{2} and q3\mathrm{q}_{3} is 0.23 J0.23 \mathrm{~J} . What is the potential energy for the pair q1\mathrm{q}_{1} and q3\mathrm{q}_{3} ?

A) 0.35 J-0.35 \mathrm{~J}
B) 0.35 J0.35 \mathrm{~J}
C) 0.11 J0.11 \mathrm{~J}
D) 0.11 J-0.11 \mathrm{~J}
E) Insufficient information is given for a unique answer
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
5
Three point charges, q1,q2q_{1}, q_{2} , and q3q_{3} , are arranged so the potential energy for the pair q1q_{1} and q2q_{2} is 0.12 J0.12 \mathrm{~J} and for the pair q2\mathrm{q}_{2} and q3\mathrm{q}_{3} is 0.23 J0.23 \mathrm{~J} . If the total potential energy of the arrangement is 0.60 J0.60 \mathrm{~J} , what is the potential energy of the pair q1\mathrm{q}_{1} and q3\mathrm{q}_{3} ?

A) 0.95 J0.95 \mathrm{~J}
B) 0.11 J0.11 \mathrm{~J}
C) 0.25 J0.25 \mathrm{~J}
D) 0.35 J0.35 \mathrm{~J}
E) Insufficient information is given for a unique answer
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
6
Three point charges, q1=2.0μC,q2=2.0μC\mathrm{q}_{1}=2.0 \mu \mathrm{C}, \mathrm{q}_{2}=2.0 \mu \mathrm{C} , and q3=1.0μC\mathrm{q}_{3}=-1.0 \mu \mathrm{C} , are located at the vertices of an equilateral triangle of side length 30 cm30 \mathrm{~cm} . What is the potential energy of this arrangement?

A) 0.12 J-0.12 \mathrm{~J}
B) 0
C) 0.24 J-0.24 \mathrm{~J}
D) 0.12 J0.12 \mathrm{~J}
E) 0.24 J0.24 \mathrm{~J}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
7
Three point charges, q1,q2q_{1}, q_{2} , and q3q_{3} , are located at the vertices of an equilateral triangle. If q1=q2q_{1}=q_{2} , what value must q3\mathrm{q}_{3} have so that the total potential energy of the arrangement is zero?

A) (q1+q2)/2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right) / 2
B) 0.5q1-0.5 \mathrm{q}_{1}
C) q1\mathrm{q}_{1}
D) 0.5q10.5 \mathrm{q}_{1}
E) no value will have this result
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
8
The unit of electric potential, the volt, is equal to a

A) CN\mathrm{C} \cdot \mathrm{N} .
B) J2/C\mathrm{J} 2 / \mathrm{C} .
C) J/C2\mathrm{J} / \mathrm{C} 2 .
D) J/C\mathrm{J} / \mathrm{C} .
E) C2N/s\mathrm{C}^{2} \cdot \mathrm{N} / \mathrm{s} .
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
9
A 2.5mC2.5-\mathrm{mC} charge is on the yy -axis at y=3.0 my=3.0 \mathrm{~m} , and a 6.3mC6.3-\mathrm{mC} charge is on the xx -axis at x=3.0 mx=3.0 \mathrm{~m} . What is the direction of the electric potential at the origin?

A) 168168^{\circ}
B) 332332^{\circ}
C) 292292^{\circ}
D) 22.022.0^{\circ}
E) potential has no direction
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
10
What is the potential at a distance of 0.0529 nm0.0529 \mathrm{~nm} from a proton?

A) 9.11pC9.11 \mathrm{pC}
B) 27.2 V-27.2 \mathrm{~V}
C) 27.2 V27.2 \mathrm{~V}
D) 13.6 V13.6 \mathrm{~V}
E) 13.6 V-13.6 \mathrm{~V}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
11
A charge q1q_{1} is placed on the yy -axis at y=4.0 my=4.0 \mathrm{~m} and the resulting potential at the position (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) is 3.0 V3.0 \mathrm{~V} . The charge q1\mathrm{q}_{1} is removed and a charge q2\mathrm{q}_{2} is placed on the x\mathrm{x} -axis at x=3.0 m\mathrm{x}=3.0 \mathrm{~m} and the resulting potential at the position (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) is 4.0 V4.0 \mathrm{~V} . If both charges are in place simultaneously, what is the potential at (3.0 m,4.0 m)(3.0 \mathrm{~m}, 4.0 \mathrm{~m}) ?

A) 12 V12 \mathrm{~V}
B) 7.0 V7.0 \mathrm{~V}
C) 3.5 V3.5 \mathrm{~V}
D) 1.0 V1.0 \mathrm{~V}
E) 5.0 V5.0 \mathrm{~V}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
12
A 2.00nC2.00 \mathrm{nC} charge is placed on the x\mathrm{x} -axis at x=3.00 cm\mathrm{x}=-3.00 \mathrm{~cm} , another 2.00nC2.00 \mathrm{nC} charge is placed on the x\mathrm{x} -axis at x=3.00 cm\mathrm{x}=3.00 \mathrm{~cm} , and a third 2.00nC2.00 \mathrm{nC} charge is placed on the y\mathrm{y} -axis at y=3.00 cm\mathrm{y}=3.00 \mathrm{~cm} . What is the potential at the origin?

A) 3600 V3600 \mathrm{~V}
B) 108 V108 \mathrm{~V}
C) 5400 V5400 \mathrm{~V}
D) 2700 V2700 \mathrm{~V}
E) 1800 V1800 \mathrm{~V}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
13
A conducting sphere of radius 20 cm20 \mathrm{~cm} is charged to a potential of 1.0×1061.0 \times 106 volts. What is the charge on its surface?

A) 4.7mC4.7 \mathrm{mC}
B) 22μC22 \mu \mathrm{C}
C) 9.0nC9.0 \mathrm{nC}
D) 16mC16 \mathrm{mC}
E) 4.4μC4.4 \mu \mathrm{C}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
14
A conducting sphere of radius 20 cm20 \mathrm{~cm} is charged so that the electric field reaches 3.0×105 V/m3.0 \times 10^{5} \mathrm{~V} / \mathrm{m} at its surface. What is the potential at the surface of the sphere?

A) 6.0×104 V6.0 \times 104 \mathrm{~V}
B) 1.5×104 V1.5 \times 10^{4} \mathrm{~V}
C) 2.7×105 V2.7 \times 10^{5} \mathrm{~V}
D) 3.0×104 V3.0 \times 10^{4} \mathrm{~V}
E) 4.5×104 V4.5 \times 10^{4} \mathrm{~V}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
15
How much charge is on a conducting sphere of diameter 20μm20 \mu \mathrm{m} if its surface potential is 50mV50 \mathrm{mV} ?

A) 56×1018C56 \times 10^{-18} \mathrm{C}
B) 50×1019C50 \times 10^{-19} \mathrm{C}
C) 1.6×1019C1.6 \times 10^{-19} \mathrm{C}
D) 32×1016C32 \times 10^{-16} \mathrm{C}
E) 14×1017C14 \times 10^{-17} \mathrm{C}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
16
If protons are accelerated from rest in a Van de Graff accelerator through a potential difference of 1.00MV1.00 \mathrm{MV} , what is their resulting speed?

A) 3.67×108 m/s3.67 \times 10^{8} \mathrm{~m} / \mathrm{s}
B) 6.92×106 m/s6.92 \times 10^{6} \mathrm{~m} / \mathrm{s}
C) 6.25×107 m/s6.25 \times 10^{7} \mathrm{~m} / \mathrm{s}
D) 1.38×107 m/s1.38 \times 10^{7} \mathrm{~m} / \mathrm{s}
E) 9.79×106 m/s9.79 \times 10^{6} \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
17
A helium nucleus is accelerated from rest through a potential difference V\mathrm{V} to a kinetic energy of 3.2×1013 J3.2 \times 10^{-13} \mathrm{~J} . What is V\mathrm{V} ?

A) 2.0MV2.0 \mathrm{MV}
B) 1.6MV1.6 \mathrm{MV}
C) 1.0MV1.0 \mathrm{MV}
D) 0.51MV0.51 \mathrm{MV}
E) 3.2MV3.2 \mathrm{MV}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
18
An air-filled parallel plate capacitor has plates of area 100 cm2100 \mathrm{~cm}^{2} and separation 0.25 mm0.25 \mathrm{~mm} . What is its capacitance?

A) 88μF88 \mu \mathrm{F}
B) 40nF40 \mathrm{nF}
C) 88pF88 \mathrm{pF}
D) 4.4μF4.4 \mu \mathrm{F}
E) 0.35nF0.35 \mathrm{nF}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
19
A parallel plate capacitor has a paper dielectric having dielectric strength 8.0kV/mm8.0 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.0. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.50 mm0.50 \mathrm{~mm} . What is the capacitance?

A) 4.2nF4.2 \mathrm{nF}
B) 5.3nF5.3 \mathrm{nF}
C) 4.2pF4.2 \mathrm{pF}
D) 1.6nF1.6 \mathrm{nF}
E) 16nF16 \mathrm{nF}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
20
If a 0.20pF0.20 \mathrm{pF} capacitor has a voltage of 40mV40 \mathrm{mV} , how many more electrons are on the negative plate than on the positive plate?

A) 5.0×1045.0 \times 104
B) 8.0×10148.0 \times 1014
C) 4.0×1034.0 \times 10^{3}
D) 1.0×1051.0 \times 10^{5}
E) none, the electrons are in equal numbers on the plates
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
21
The unit F\mathrm{F} , the farad, is equal to which of the following?

A) C/V\mathrm{C} / \mathrm{V}
B) V/m\mathrm{V} / \mathrm{m}
C) V2/C\mathrm{V} 2 / \mathrm{C}
D) C/V2\mathrm{C} / \mathrm{V} 2
E) V/C\mathrm{V} / \mathrm{C}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
22
A parallel plate capacitor has a paper dielectric having dielectric strength 8.00kV/mm8.00 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.00. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.500 mm0.500 \mathrm{~mm} . If 10.0 V10.0 \mathrm{~V} are applied to this capacitor, what is the charge on the capacitor?

A) 16.0nC16.0 \mathrm{nC}
B) 42.0μC42.0 \mu \mathrm{C}
C) 50.0μC50.0 \mu \mathrm{C}
D) 42.0nC42.0 \mathrm{nC}
E) 159nC159 \mathrm{nC}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
23
What area plates would a 1.0 F1.0 \mathrm{~F} parallel plate capacitor have, with a plate separation of 0.10 mm0.10 \mathrm{~mm} and a dielectric of constant 10 ?

A) 5500 cm25500 \mathrm{~cm}^{2}
B) 130 m2130 \mathrm{~m}^{2}
C) 1.1×106 m21.1 \times 106 \mathrm{~m}^{2}
D) 1000 cm21000 \mathrm{~cm}^{2}
E) 4.4×109 m24.4 \times 10^{9} \mathrm{~m}^{2}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
24
A parallel plate capacitor has a paper dielectric having dielectric strength 8.0kV/mm8.0 \mathrm{kV} / \mathrm{mm} and dielectric constant 3.0. The plate area is 3000 cm23000 \mathrm{~cm}^{2} and the plate separation is 0.50 mm0.50 \mathrm{~mm} . What is the highest voltage that can be applied to this capacitor before breakdown occurs?

A) 4.0×103 V4.0 \times 10^{3} \mathrm{~V}
B) 1.2×104 V1.2 \times 10^{4} \mathrm{~V}
C) 15 V15 \mathrm{~V}
D) 4.0×102 V4.0 \times 10^{2} \mathrm{~V}
E) 1.2×102 V1.2 \times 10^{2} \mathrm{~V}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
25
The electric field in the dielectric-filled region between the plates of a capacitor is E. What is the charge density on the plates?

A) κε0E\kappa \varepsilon_{0} \mathrm{E}
B) EV\mathrm{E} \cdot \mathrm{V}
C) E2ε0\mathrm{E}^{2} \varepsilon_{0}
D) V2E\mathrm{V}^{2} \cdot \mathrm{E}
E) ε0E\varepsilon_{0} \mathrm{E}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
26
The electric potential at a distance dd from a point charge is V\mathrm{V} . At a distance d\mathrm{d} ', the potential is 2 V2 \mathrm{~V} . What is the ratio of electric field at d\mathrm{d} to that at d\mathrm{d} ?

A) more information is necessary
B) 1/41 / 4
C) 2
D) 4
E) 1/21 / 2
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
27
A pair of parallel conducting plates have potentials of 17 V-17 \mathrm{~V} and 55 V55 \mathrm{~V} , respectively. An electron is ejected from the plate at potential 17 V-17 \mathrm{~V} and travels to the plate at 55 V55 \mathrm{~V} . What is the speed of the electron as it strikes the 55 V55 \mathrm{~V} plate, assuming it left the 17 V-17 \mathrm{~V} plate starting from rest? The mass of the electron is 9.11×9.11 \times 1031 kg10^{-31} \mathrm{~kg} .

A) 3.6×106 m/s3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}
B) 2.2×106 m/s2.2 \times 10^{6} \mathrm{~m} / \mathrm{s} .
C) 3.1×106 m/s3.1 \times 10^{6} \mathrm{~m} / \mathrm{s}
D) 5.0×106 m/s5.0 \times 10^{6}\mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
28
The electron is projected horizontally with a speed of 5.0×106 m5.0 \times 10^{6} \mathrm{~m} exactly in the middle of two parallel plates at potentials of 40 V-40 \mathrm{~V} and 104 V104 \mathrm{~V} , respectively. The plate separation is 3.0 cm3.0 \mathrm{~cm} . The plates are long enough that the electron, rather than passing completely between the plates, eventually strikes the plate sitting at 104 V104 \mathrm{~V} potential. What is the speed of the electron when it strikes the plate? The mass of the electron is 9.11×1031 kg9.11 \times 10^{-31} \mathrm{~kg} .

A) 6.0×106 m/s6.0 \times 106 \mathrm{~m} / \mathrm{s}
B) 7.1×106 m/s7.1 \times 106 \mathrm{~m} / \mathrm{s}
C) 8.7×106 m/s8.7 \times 106 \mathrm{~m} / \mathrm{s}
D) 5.0×106 m/s5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
29
Which of the following statements is true?

A) If the electric field is zero at a point, then the electric potential is zero at that point also.
B) The electric field is large where the potential is large, and vice versa.
C) If the electric potential is zero at a point, then the electric field is zero at that point also.
D) If the electric potential is zero throughout a region of space, then the electric field is necessarily also zero there.
E) If the electric field is zero throughout a region of space, then the electric potential is necessarily also zero there.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
30
The capacitance of a parallel plate capacitor changes when a dielectric is inserted between the plates. This is mainly due to

A) the polarizability of the material, which sets up an electric field opposite to the applied field, thus reducing the electric field strength in the region.
B) the fact that dielectrics have excess charge that then "shields" the plates from each other, reducing the electric field in the region.
C) the existence of denser matter than air or vacuum, which forms a barrier for electric field lines and reduces the electric field in the region.
D) None of these.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 30 flashcards in this deck.