Deck 8: Torque and Angular Momentum

Full screen (f)
exit full mode
Question
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Z-axis, perpendicular to the X-Y plane, is

A) 68 kg m268 \mathrm{~kg} \mathrm{~m}^{2} .
B) 55 kg m255 \mathrm{~kg} \mathrm{~m}^{2} .
C) 62 kg m262 \mathrm{~kg} \mathrm{~m}^{2} .
D) 50 kg m250 \mathrm{~kg} \mathrm{~m}^{2} .
E) 58 kg m258 \mathrm{~kg} \mathrm{~m}^{2} .
Use Space or
up arrow
down arrow
to flip the card.
Question
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X\mathrm{X} -axis, perpendicular to the Z-Y plane, is

A) 28 kg m228 \mathrm{~kg} \mathrm{~m}^{2} .
B) 36 kg m236 \mathrm{~kg} \mathrm{~m}^{2} .
C) 33 kg m233 \mathrm{~kg} \mathrm{~m}^{2} .
D) 23 kg m223 \mathrm{~kg} \mathrm{~m}^{2} .
E) 41 kg m241 \mathrm{~kg} \mathrm{~m}^{2} .
Question
What is the rotational inertia of a solid iron disk of mass 41.0 kg41.0 \mathrm{~kg} with a thickness of 5.00 cm5.00 \mathrm{~cm} and radius of 30.0 cm30.0 \mathrm{~cm} , about an axis perpendicular to the disk and passing through its center?

A) 0.980 kg m20.980 \mathrm{~kg} \mathrm{~m}^{2}
B) 0.761 kg m20.761 \mathrm{~kg} \mathrm{~m}^{2}
C) 2.29 kg m22.29 \mathrm{~kg} \mathrm{~m}^{2}
D) 1.85 kg m21.85 \mathrm{~kg} \mathrm{~m}^{2}
Question
A 4.00 kg4.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,0.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1.0 m,3.00(-1.0 \mathrm{~m}, 3.00 m,0.00 m\mathrm{m}, 0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X-axis, perpendicular to the Z-Y plane, is

A) 24 kg m224 \mathrm{~kg} \mathrm{~m}^{2} .
B) 56 kg m256 \mathrm{~kg} \mathrm{~m}^{2} .
C) 62 kg m262 \mathrm{~kg} \mathrm{~m}^{2} .
D) 43 kg m243 \mathrm{~kg} \mathrm{~m}^{2} .
E) 36 kg m236 \mathrm{~kg} \mathrm{~m}^{2} .
Question
A 4.00 kg4.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,0.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1 m,3.00(-1 \mathrm{~m}, 3.00 m,0.00 m\mathrm{m}, 0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Y-axis, perpendicular to the X-Z plane, is

A) 32 kg m232 \mathrm{~kg} \mathrm{~m}^{2} .
B) 29 kg m229 \mathrm{~kg} \mathrm{~m}^{2} .
C) 40 kg m240 \mathrm{~kg} \mathrm{~m}^{2} .
D) 24 kg m224 \mathrm{~kg} \mathrm{~m}^{2} .
E) 19 kg m219 \mathrm{~kg} \mathrm{~m}^{2} .
Question
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Z-axis, perpendicular to the XY\mathrm{X}-\mathrm{Y} plane, is

A) 98 kg m298 \mathrm{~kg} \mathrm{~m}^{2} .
B) 79 kg m279 \mathrm{~kg} \mathrm{~m}^{2} .
C) 60 kg m260 \mathrm{~kg} \mathrm{~m}^{2} .
D) 112 kg m2112 \mathrm{~kg} \mathrm{~m}^{2} .
E) 85 kg m285 \mathrm{~kg} \mathrm{~m}^{2} .
Question
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X-axis, perpendicular to the Z-Y plane, is

A) 167 kg m2167 \mathrm{~kg} \mathrm{~m}^{2} .
B) 281 kg m2281 \mathrm{~kg} \mathrm{~m}^{2} .
C) 113 kg m2113 \mathrm{~kg} \mathrm{~m}^{2} .
D) 69 kg m269 \mathrm{~kg} \mathrm{~m}^{2} .
E) 85 kg m285 \mathrm{~kg} \mathrm{~m}^{2} .
Question
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Y-axis, perpendicular to the Z-X plane, is

A) 55 kg m255 \mathrm{~kg} \mathrm{~m}^{2} .
B) 73 kg m273 \mathrm{~kg} \mathrm{~m}^{2} .
C) 60 kg m260 \mathrm{~kg} \mathrm{~m}^{2} .
D) 66 kg m266 \mathrm{~kg} \mathrm{~m}^{2} .
E) 48 kg m248 \mathrm{~kg} \mathrm{~m}^{2} .
Question
The rotational inertia of a thin rod about one end is 1/3ML21 / 3 \mathrm{ML}^{2} . What is the rotational inertia of the same rod about a point located 0.300 L0.300 \mathrm{~L} from the end?

A) 0.300ML20.300 \mathrm{ML}^{2}
B) 0.205ML20.205 \mathrm{ML}^{2}
C) 0.240ML20.240 \mathrm{ML}^{2}
D) 0.198ML20.198 \mathrm{ML}^{2}
E) 0.123ML20.123 \mathrm{ML}^{2}
Question
The rotational inertia of a thin rod about one end is 1/3ML21 / 3 \mathrm{ML}^{2} . What is the rotational inertia of the same rod about a point located 0.40 L0.40 \mathrm{~L} from the end?

A) 0.093ML20.093 \mathrm{ML}^{2}
B) 0.493ML20.493 \mathrm{ML}^{2}
C) 0.073ML20.073 \mathrm{ML}^{2}
D) 0.243ML20.243 \mathrm{ML}^{2}
E) 0.056ML20.056 \mathrm{ML}^{2}
Question
A 30.0 cm30.0 \mathrm{~cm} wrench is used to generate a torque at a bolt. A force of 40 N40 \mathrm{~N} is applied perpendicularly at the end of the wrench. The torque generated at the bolt is

A) 9.0 Nm9.0 \mathrm{~N} \cdot \mathrm{m} .
B) 7.0 Nm7.0 \mathrm{~N} \cdot \mathrm{m} .
C) 12 Nm12 \mathrm{~N} \cdot \mathrm{m} .
D) 20 Nm20 \mathrm{~N} \cdot \mathrm{m} .
E) 5.0 Nm5.0 \mathrm{~N} \cdot \mathrm{m} .
Question
A 30.0 cm30.0 \mathrm{~cm} wrench is used to generate a torque at a bolt. A force of 50.0 N50.0 \mathrm{~N} is applied at the end of the wrench at an angle of 70.0 degrees. The torque generated at the bolt is

A) 10.4 Nm10.4 \mathrm{~N} \cdot \mathrm{m} .
B) 14.1 Nm14.1 \mathrm{~N} \cdot \mathrm{m} .
C) 19.7 Nm19.7 \mathrm{~N} \cdot \mathrm{m} .
D) 26.2 Nm26.2 \mathrm{~N} \cdot \mathrm{m} .
E) 21.5 Nm21.5 \mathrm{~N} \cdot \mathrm{m} .
Question
A torque of 20.0 Nm20.0 \mathrm{~N} \cdot \mathrm{m} is applied to a bolt. The bolt rotates through an angle of 180 degrees. The work done in turning the bolt is

A) 49.9 J49.9 \mathrm{~J} .
B) 62.8 J62.8 \mathrm{~J} .
C) 72.5 J72.5 \mathrm{~J} .
D) 51.9 J51.9 \mathrm{~J} .
E) 58.4 J58.4 \mathrm{~J}
Question
A torque of 15.0 Nm15.0 \mathrm{~N} \cdot \mathrm{m} is applied to a bolt. The bolt rotates through an angle of 360 degrees. The work done in turning the bolt is

A) 96.7 J96.7 \mathrm{~J} .
B) 91.3 J91.3 \mathrm{~J} .
C) 98.1 J98.1 \mathrm{~J} .
D) 89.9 J89.9 \mathrm{~J} .
E) 94.2 J94.2 \mathrm{~J} .
Question
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (1.33 m,2.00 m,0)(1.33 \mathrm{~m}, 2.00 \mathrm{~m}, 0) .
B) (1.33 m,1.00 m,0)(1.33 \mathrm{~m}, 1.00 \mathrm{~m}, 0) .
C) (2.00 m,1.33 m,0)(2.00 \mathrm{~m}, 1.33 \mathrm{~m}, 0) .
D) (1.50 m,1.33 m,0)(1.50 \mathrm{~m}, 1.33 \mathrm{~m}, 0) .
E) (1.33 m,1.50 m,0)(1.33 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
Question
A 5.00 kg5.00 \mathrm{~kg} mass is located at (2.00 m,0.00 m,0.00 m)(2.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (0.00 m,4.00 m(0.00 \mathrm{~m}, 4.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (1.00 m,1.00 m,0)(1.00 \mathrm{~m}, 1.00 \mathrm{~m}, 0) .
B) (1.50 m,1.25 m,0)(1.50 \mathrm{~m}, 1.25 \mathrm{~m}, 0) .
C) (1.25 m,1.50 m,0)(1.25 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
D) (1.25 m,1.25 m,0)(1.25 \mathrm{~m}, 1.25 \mathrm{~m}, 0) .
E) (1.50 m,1.50 m,0)(1.50 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
Question
A 5.00 kg5.00 \mathrm{~kg} mass is located at ( 2.00 m,0.00 m,3.00 m)2.00 \mathrm{~m}, 0.00 \mathrm{~m}, 3.00 \mathrm{~m}) and a 2.00 kg2.00 \mathrm{~kg} mass is located at (0.00 m,4.00 m(0.00 \mathrm{~m}, 4.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (7/7 m,10/7 m,11/7 m)(7 / 7 \mathrm{~m}, 10 / 7 \mathrm{~m}, 11 / 7 \mathrm{~m}) .
B) (11/7 m,7/7 m,8/7 m)(11 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}) .
C) (8/7 m,7/7 m,10/7 m)(8 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 10 / 7 \mathrm{~m}) .
D) (10/7 m,7/7 m,8/7 m)(10 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}) .
E) (10/7 m,8/7 m,11/7 m)(10 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}, 11 / 7 \mathrm{~m}) .
Question
A 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,0.00 m,3.00 m)(1.0 \mathrm{~m}, 0.00 \mathrm{~m}, 3.00 \mathrm{~m}) , a 2.00 kg2.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m,2.00(0.00 \mathrm{~m}, 3.00 \mathrm{~m},-2.00 m)\mathrm{m}) , and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,0.00 m)(-1.0 \mathrm{~m},-2.00 \mathrm{~m}, 0.00 \mathrm{~m}) . The center of gravity of the system of masses is

A) (10/10 m,2/10 m,3/10 m)(10 / 10 \mathrm{~m}, 2 / 10 \mathrm{~m}, 3 / 10 \mathrm{~m}) .
B) (1/10 m,10/10 m,1/10 m)(1 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}, 1 / 10 \mathrm{~m}) .
C) (3/10 m,2/10 m,10/10 m)(3 / 10 \mathrm{~m}, 2 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}) .
D) (2/10 m,0 m,11/10 m)(2 / 10 \mathrm{~m}, 0 \mathrm{~m}, 11 / 10 \mathrm{~m}) .
E) (2/10 m,10/10 m,0 m)(2 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}, 0 \mathrm{~m}) .
Question
A 6.00 kg6.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,3.00 m)(1.0 \mathrm{~m},-2.00 \mathrm{~m}, 3.00 \mathrm{~m}) , a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m,2.00(1.0 \mathrm{~m}, 3.00 \mathrm{~m},-2.00 m)\mathrm{m}) , and a 4.00 kg4.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,2.00 m)(-1.0 \mathrm{~m},-2.00 \mathrm{~m}, 2.00 \mathrm{~m}) . The center of gravity of the system of masses is

A) (5/15 m,17/15 m,5/15 m)(5 / 15 \mathrm{~m},-17 / 15 \mathrm{~m}, 5 / 15 \mathrm{~m}) .
B) (12/15 m,5/15 m,16/15 m)(12 / 15 \mathrm{~m},-5 / 15 \mathrm{~m}, 16 / 15 \mathrm{~m}) .
C) (7/15 m,5/15 m,16/15 m)(7 / 15 \mathrm{~m},-5 / 15 \mathrm{~m}, 16 / 15 \mathrm{~m}) .
D) (16/15 m,1/15 m,17/15 m)(16 / 15 \mathrm{~m},-1 / 15 \mathrm{~m}, 17 / 15 \mathrm{~m}) .
E) (5/15 m,1/15 m,17/15 m)(5 / 15 \mathrm{~m},-1 / 15 \mathrm{~m}, 17 / 15 \mathrm{~m}) .
Question
A 1.500 m1.500 \mathrm{~m} long uniform beam of mass 30.00 kg30.00 \mathrm{~kg} is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A 50.00 kg50.00 \mathrm{~kg} mass, m\mathrm{m} , is attached to the end of the beam. What is the tension in the wire?
 <strong>A  1.500 \mathrm{~m}  long uniform beam of mass  30.00 \mathrm{~kg}  is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A  50.00 \mathrm{~kg}  mass,  \mathrm{m} , is attached to the end of the beam. What is the tension in the wire?  </strong> A)  1,855 \mathrm{~N}  B)  1,255 \mathrm{~N}  C)  1,435 \mathrm{~N}  D)  2,034 \mathrm{~N}  E)  1,035 \mathrm{~N}  <div style=padding-top: 35px>

A) 1,855 N1,855 \mathrm{~N}
B) 1,255 N1,255 \mathrm{~N}
C) 1,435 N1,435 \mathrm{~N}
D) 2,034 N2,034 \mathrm{~N}
E) 1,035 N1,035 \mathrm{~N}
Question
A 1.500 m1.500 \mathrm{~m} long uniform beam of mass 30.00 kg30.00 \mathrm{~kg} is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A 50.00 kg50.00 \mathrm{~kg} mass, m\mathrm{m} , is attached to the end of the beam. What are the vertical and horizontal components of the force of the wall on the beam at the hinge?
 <strong>A  1.500 \mathrm{~m}  long uniform beam of mass  30.00 \mathrm{~kg}  is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A  50.00 \mathrm{~kg}  mass,  \mathrm{m} , is attached to the end of the beam. What are the vertical and horizontal components of the force of the wall on the beam at the hinge?  </strong> A)  \mathrm{H}=1,458 \mathrm{~N}, \mathrm{~V}=454.0 \mathrm{~N}  B)  \mathrm{H}=750 \mathrm{~N}, \mathrm{~V}=297.3 \mathrm{~N}  C)  \mathrm{H}=1,300 \mathrm{~N}, \mathrm{~V}=403.4 \mathrm{~N}  D)  \mathrm{H}=979 \mathrm{~N}, \mathrm{~V}=324.5 \mathrm{~N}  E)  \mathrm{H}=1,179 \mathrm{~N}, \mathrm{~V}=354.9 \mathrm{~N}  <div style=padding-top: 35px>

A) H=1,458 N, V=454.0 N\mathrm{H}=1,458 \mathrm{~N}, \mathrm{~V}=454.0 \mathrm{~N}
B) H=750 N, V=297.3 N\mathrm{H}=750 \mathrm{~N}, \mathrm{~V}=297.3 \mathrm{~N}
C) H=1,300 N, V=403.4 N\mathrm{H}=1,300 \mathrm{~N}, \mathrm{~V}=403.4 \mathrm{~N}
D) H=979 N, V=324.5 N\mathrm{H}=979 \mathrm{~N}, \mathrm{~V}=324.5 \mathrm{~N}
E) H=1,179 N, V=354.9 N\mathrm{H}=1,179 \mathrm{~N}, \mathrm{~V}=354.9 \mathrm{~N}
Question
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.20 m1.20 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the vertical force of the ground on the ladder?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.20 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the vertical force of the ground on the ladder?  </strong> A)  735 \mathrm{~N}  B)  832 \mathrm{~N}  C)  625 \mathrm{~N}  D)  900 \mathrm{~N}  E)  640 \mathrm{~N}  <div style=padding-top: 35px>

A) 735 N735 \mathrm{~N}
B) 832 N832 \mathrm{~N}
C) 625 N625 \mathrm{~N}
D) 900 N900 \mathrm{~N}
E) 640 N640 \mathrm{~N}
Question
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.20 m1.20 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.20 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?  </strong> A) 40.55 degrees B) 30.34 degrees C) 26.57 degrees D) 36.35 degrees E) 46.52 degrees <div style=padding-top: 35px>

A) 40.55 degrees
B) 30.34 degrees
C) 26.57 degrees
D) 36.35 degrees
E) 46.52 degrees
Question
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.2 m1.2 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.400 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.2 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.400 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?  </strong> A) 35 degrees B) 53 degrees C) 45 degrees D) 60 degrees E) 65 degrees <div style=padding-top: 35px>

A) 35 degrees
B) 53 degrees
C) 45 degrees
D) 60 degrees
E) 65 degrees
Question
A 10 kg10 \mathrm{~kg} object has a moment of inertia of 1.25 kg m21.25 \mathrm{~kg} \mathrm{~m}^{2} . If a torque of 2.5 Nm2.5 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} .
B) 4.0rad/s24.0 \mathrm{rad} / \mathrm{s}^{2} .
C) 8.0rad/s28.0 \mathrm{rad} / \mathrm{s}^{2} .
D) 10rad/s210 \mathrm{rad} / \mathrm{s}^{2} .
E) 6.0rad/s26.0 \mathrm{rad} / \mathrm{s}^{2} .
Question
A 8.0 kg8.0 \mathrm{~kg} object has a moment of inertia of 1.00 kg m21.00 \mathrm{~kg} \mathrm{~m}^{2} . What torque is needed to give the object an angular acceleration of 1.5rad/s21.5 \mathrm{rad} / \mathrm{s} 2 ?

A) 1.0 Nm1.0 \mathrm{~N} \cdot \mathrm{m}
B) 2.5 Nm2.5 \mathrm{~N} \cdot \mathrm{m}
C) 2.0 Nm2.0 \mathrm{~N} \cdot \mathrm{m}
D) 3.0 Nm3.0 \mathrm{~N} \cdot \mathrm{m}
E) 1.5 Nm1.5 \mathrm{~N} \cdot \mathrm{m}
Question
A 10 kg10 \mathrm{~kg} sphere with a 25.0 cm25.0 \mathrm{~cm} radius has a moment of inertia of 2/5MR22 / 5 \mathrm{MR} 2 . If a torque of 2.0 Nm2.0 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} .
B) 4.0rad/s24.0 \mathrm{rad} / \mathrm{s}^{2} .
C) 8.0rad/s28.0 \mathrm{rad} / \mathrm{s}^{2} .
D) 1.0rad/s21.0 \mathrm{rad} / \mathrm{s}^{2} .
E) 6.0rad/s26.0 \mathrm{rad} / \mathrm{s}^{2} .
Question
An 8.00 kg8.00 \mathrm{~kg} object has a moment of inertia of 1.50 kg m21.50 \mathrm{~kg} \mathrm{~m}^{2} . If a torque of 2.00 Nm2.00 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 1.33rad/s21.33 \mathrm{rad} / \mathrm{s}^{2} .
B) 1.00rad/s21.00 \mathrm{rad} / \mathrm{s}^{2} .
C) 2.01rad/s22.01 \mathrm{rad} / \mathrm{s}^{2} .
D) 0.750rad/s20.750 \mathrm{rad} / \mathrm{s}^{2} .
E) 2.67rad/s22.67 \mathrm{rad} / \mathrm{s}^{2} .
Question
A 5.00 kg5.00 \mathrm{~kg} object has a moment of inertia of 1.20 kg m21.20 \mathrm{~kg} \mathrm{~m}^{2} . What torque is needed to give the object an angular acceleration of 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} ?

A) 3.0 Nm3.0 \mathrm{~N} \cdot \mathrm{m}
B) 2.6 Nm2.6 \mathrm{~N} \cdot \mathrm{m}
C) 2.4 Nm2.4 \mathrm{~N} \cdot \mathrm{m}
D) 3.2 Nm3.2 \mathrm{~N} \cdot \mathrm{m}
E) 2.8 Nm2.8 \mathrm{~N} \cdot \mathrm{m}
Question
A 10 kg10 \mathrm{~kg} solid cylinder with a 50.0 cm50.0 \mathrm{~cm} radius has a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If a torque of 2.0 Nm2.0 \mathrm{~N} \bullet \mathrm{m} is applied to the object, the angular acceleration is

A) 1.8rad/s21.8 \mathrm{rad} / \mathrm{s}^{2} .
B) 1.6rad/s21.6 \mathrm{rad} / \mathrm{s}^{2} .
C) 2.3rad/s22.3 \mathrm{rad} / \mathrm{s}^{2} .
D) 1.0rad/s21.0 \mathrm{rad} / \mathrm{s}^{2} .
E) 2.1rad/s22.1 \mathrm{rad} / \mathrm{s}^{2} .
Question
A torque of 2.00 Nm2.00 \mathrm{~N} \cdot \mathrm{m} is applied to a 10.0 kg10.0 \mathrm{~kg} object to give it an angular acceleration. If the angular acceleration is 1.75rad/s21.75 \mathrm{rad} / \mathrm{s}^{2} , then the moment of inertia is

A) 1.35 kg m21.35 \mathrm{~kg} \mathrm{~m}^{2} .
B) 1.05 kg m21.05 \mathrm{~kg} \mathrm{~m}^{2} .
C) 1.20 kg m21.20 \mathrm{~kg} \mathrm{~m}^{2} .
D) 1.14 kg m21.14 \mathrm{~kg} \mathrm{~m}^{2} .
E) 1.95 kg m21.95 \mathrm{~kg} \mathrm{~m}^{2} .
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the downward acceleration of  m_{1}  ?  </strong> A)  2.72 \mathrm{~m} / \mathrm{s}^{2}  B)  1.55 \mathrm{~m} / \mathrm{s}^{2}  C)  1.96 \mathrm{~m} / \mathrm{s}^{2}  D)  2.06 \mathrm{~m} / \mathrm{s}^{2}  E)  2.33 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 2.72 m/s22.72 \mathrm{~m} / \mathrm{s}^{2}
B) 1.55 m/s21.55 \mathrm{~m} / \mathrm{s}^{2}
C) 1.96 m/s21.96 \mathrm{~m} / \mathrm{s}^{2}
D) 2.06 m/s22.06 \mathrm{~m} / \mathrm{s}^{2}
E) 2.33 m/s22.33 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  m_{1}  ?  </strong> A)  6.83 \mathrm{~N}  B)  8.02 \mathrm{~N}  C)  8.33 \mathrm{~N}  D)  7.03 \mathrm{~N}  E)  7.84 \mathrm{~N}  <div style=padding-top: 35px>

A) 6.83 N6.83 \mathrm{~N}
B) 8.02 N8.02 \mathrm{~N}
C) 8.33 N8.33 \mathrm{~N}
D) 7.03 N7.03 \mathrm{~N}
E) 7.84 N7.84 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{2}  ?  </strong> A)  2.98 \mathrm{~m} / \mathrm{s}^{2}  B)  3.23 \mathrm{~m} / \mathrm{s}^{2}  C)  3.02 \mathrm{~m} / \mathrm{s}^{2}  D)  3.92 \mathrm{~m} / \mathrm{s}^{2}  E)  3.65 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2}
B) 3.23 m/s23.23 \mathrm{~m} / \mathrm{s}^{2}
C) 3.02 m/s23.02 \mathrm{~m} / \mathrm{s}^{2}
D) 3.92 m/s23.92 \mathrm{~m} / \mathrm{s}^{2}
E) 3.65 m/s23.65 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25 cm25 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the downward acceleration of  \mathrm{m}_{1}  ?  </strong> A)  4.9 \mathrm{~m} / \mathrm{s}^{2}  B)  4.5 \mathrm{~m} / \mathrm{s}^{2}  C)  3.7 \mathrm{~m} / \mathrm{s}^{2}  D)  4.1 \mathrm{~m} / \mathrm{s}^{2}  E)  3.9 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 4.9 m/s24.9 \mathrm{~m} / \mathrm{s}^{2}
B) 4.5 m/s24.5 \mathrm{~m} / \mathrm{s}^{2}
C) 3.7 m/s23.7 \mathrm{~m} / \mathrm{s}^{2}
D) 4.1 m/s24.1 \mathrm{~m} / \mathrm{s}^{2}
E) 3.9 m/s23.9 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the downward acceleration of  m_{1}  ?  </strong> A)  3.92 \mathrm{~m} / \mathrm{s}^{2}  B)  3.04 \mathrm{~m} / \mathrm{s}^{2}  C)  2.96 \mathrm{~m} / \mathrm{s}^{2}  D)  4.42 \mathrm{~m} / \mathrm{s}^{2}  E)  3.42 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 3.92 m/s23.92 \mathrm{~m} / \mathrm{s}^{2}
B) 3.04 m/s23.04 \mathrm{~m} / \mathrm{s}^{2}
C) 2.96 m/s22.96 \mathrm{~m} / \mathrm{s}^{2}
D) 4.42 m/s24.42 \mathrm{~m} / \mathrm{s}^{2}
E) 3.42 m/s23.42 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{1}  ?  </strong> A)  32.7 \mathrm{~N}  B)  31.0 \mathrm{~N}  C)  29.0 \mathrm{~N}  D)  23.5 \mathrm{~N}  E)  35.6 \mathrm{~N}  <div style=padding-top: 35px>

A) 32.7 N32.7 \mathrm{~N}
B) 31.0 N31.0 \mathrm{~N}
C) 29.0 N29.0 \mathrm{~N}
D) 23.5 N23.5 \mathrm{~N}
E) 35.6 N35.6 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{2}  ?  </strong> A)  12.6 \mathrm{~N}  B)  15.7 \mathrm{~N}  C)  19.8 \mathrm{~N}  D)  10.4 \mathrm{~N}  E)  17.6 \mathrm{~N}  <div style=padding-top: 35px>

A) 12.6 N12.6 \mathrm{~N}
B) 15.7 N15.7 \mathrm{~N}
C) 19.8 N19.8 \mathrm{~N}
D) 10.4 N10.4 \mathrm{~N}
E) 17.6 N17.6 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?  </strong> A)  0.695 \mathrm{~m} / \mathrm{s}^{2}  B)  0.754 \mathrm{~m} / \mathrm{s}^{2}  C)  0.805 \mathrm{~m} / \mathrm{s}^{2}  D)  0.703 \mathrm{~m} / \mathrm{s}^{2}  E)  0.731 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 0.695 m/s20.695 \mathrm{~m} / \mathrm{s}^{2}
B) 0.754 m/s20.754 \mathrm{~m} / \mathrm{s}^{2}
C) 0.805 m/s20.805 \mathrm{~m} / \mathrm{s}^{2}
D) 0.703 m/s20.703 \mathrm{~m} / \mathrm{s}^{2}
E) 0.731 m/s20.731 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the tension in the string that is attached to m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the tension in the string that is attached to  m_{1}  ?  </strong> A)  58.2 \mathrm{~N}  B)  74.5 \mathrm{~N}  C)  36.2 \mathrm{~N}  D)  44.6 \mathrm{~N}  E)  60.6 \mathrm{~N}  <div style=padding-top: 35px>

A) 58.2 N58.2 \mathrm{~N}
B) 74.5 N74.5 \mathrm{~N}
C) 36.2 N36.2 \mathrm{~N}
D) 44.6 N44.6 \mathrm{~N}
E) 60.6 N60.6 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the tension in the string that is attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the tension in the string that is attached to  \mathrm{m}_{2}  ?  </strong> A)  41.3 \mathrm{~N}  B)  20.7 \mathrm{~N}  C)  31.7 \mathrm{~N}  D)  25.5 \mathrm{~N}  E)  35.2 \mathrm{~N}  <div style=padding-top: 35px>

A) 41.3 N41.3 \mathrm{~N}
B) 20.7 N20.7 \mathrm{~N}
C) 31.7 N31.7 \mathrm{~N}
D) 25.5 N25.5 \mathrm{~N}
E) 35.2 N35.2 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 12MR2\frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?  </strong> A)  2.67 \mathrm{~m} / \mathrm{s}^{2}  B)  4.05 \mathrm{~m} / \mathrm{s}^{2}  C)  5.05 \mathrm{~m} / \mathrm{s}^{2}  D)  3.44 \mathrm{~m} / \mathrm{s}^{2}  E)  4.75 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 2.67 m/s22.67 \mathrm{~m} / \mathrm{s}^{2}
B) 4.05 m/s24.05 \mathrm{~m} / \mathrm{s}^{2}
C) 5.05 m/s25.05 \mathrm{~m} / \mathrm{s}^{2}
D) 3.44 m/s23.44 \mathrm{~m} / \mathrm{s}^{2}
E) 4.75 m/s24.75 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass  \mathrm{m}_{1}  ?  </strong> A)  27.4 \mathrm{~N}  B)  37.4 \mathrm{~N}  C)  30.2 \mathrm{~N}  D)  43.5 \mathrm{~N}  E)  20.8 \mathrm{~N}  <div style=padding-top: 35px>

A) 27.4 N27.4 \mathrm{~N}
B) 37.4 N37.4 \mathrm{~N}
C) 30.2 N30.2 \mathrm{~N}
D) 43.5 N43.5 \mathrm{~N}
E) 20.8 N20.8 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  1 \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass  \mathrm{m}_{2}  ?  </strong> A)  63.4 \mathrm{~N}  B)  42.8 \mathrm{~N}  C)  33.6 \mathrm{~N}  D)  53.6 \mathrm{~N}  E)  75.5 \mathrm{~N}  <div style=padding-top: 35px>

A) 63.4 N63.4 \mathrm{~N}
B) 42.8 N42.8 \mathrm{~N}
C) 33.6 N33.6 \mathrm{~N}
D) 53.6 N53.6 \mathrm{~N}
E) 75.5 N75.5 \mathrm{~N}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 2.00 kg, m22.00 \mathrm{~kg}, \mathrm{~m}_{2} is 1.00 kg,M1.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  2.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  1.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  3.27 \mathrm{~m} / \mathrm{s}^{2}  down B)  2.94 \mathrm{~m} / \mathrm{s}^{2}  down C)  1.64 \mathrm{~m} / \mathrm{s}^{2}  down D)  3.98 \mathrm{~m} / \mathrm{s}^{2}  down E)  3.15 \mathrm{~m} / \mathrm{s}^{2}  down <div style=padding-top: 35px>

A) 3.27 m/s23.27 \mathrm{~m} / \mathrm{s}^{2} down
B) 2.94 m/s22.94 \mathrm{~m} / \mathrm{s}^{2} down
C) 1.64 m/s21.64 \mathrm{~m} / \mathrm{s}^{2} down
D) 3.98 m/s23.98 \mathrm{~m} / \mathrm{s}^{2} down
E) 3.15 m/s23.15 \mathrm{~m} / \mathrm{s}^{2} down
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg,M2.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  0.00 \mathrm{~m} / \mathrm{s}^{2}  B)  2.20 \mathrm{~m} / \mathrm{s}^{2}  C)  1.20 \mathrm{~m} / \mathrm{s}^{2}  D)  1.80 \mathrm{~m} / \mathrm{s}^{2}  E)  2.80 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2}
B) 2.20 m/s22.20 \mathrm{~m} / \mathrm{s}^{2}
C) 1.20 m/s21.20 \mathrm{~m} / \mathrm{s}^{2}
D) 1.80 m/s21.80 \mathrm{~m} / \mathrm{s}^{2}
E) 2.80 m/s22.80 \mathrm{~m} / \mathrm{s}^{2}
Question
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg,M4.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 70.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 70.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  2.15 \mathrm{~m} / \mathrm{s}^{2}  down B)  3.10 \mathrm{~m} / \mathrm{s}^{2}  down C)  2.43 \mathrm{~m} / \mathrm{s}^{2}  down D)  2.89 \mathrm{~m} / \mathrm{s}^{2}  down E)  1.49 \mathrm{~m} / \mathrm{s}^{2}  down <div style=padding-top: 35px>

A) 2.15 m/s22.15 \mathrm{~m} / \mathrm{s}^{2} down
B) 3.10 m/s23.10 \mathrm{~m} / \mathrm{s}^{2} down
C) 2.43 m/s22.43 \mathrm{~m} / \mathrm{s}^{2} down
D) 2.89 m/s22.89 \mathrm{~m} / \mathrm{s}^{2} down
E) 1.49 m/s21.49 \mathrm{~m} / \mathrm{s}^{2} down
Question
A 4.00 kg4.00 \mathrm{~kg} solid sphere ( I=2/5MR2)\left.\mathrm{I}=2 / 5 \mathrm{MR}^{2}\right) is spinning with an angular velocity of 23.0rad/s23.0 \mathrm{rad} / \mathrm{s} . The diameter of the sphere is 20.0 cm20.0 \mathrm{~cm} . The rotational kinetic energy of the spinning sphere is

A) 4.23 J4.23 \mathrm{~J} .
B) 3.02 J3.02 \mathrm{~J} .
C) 3.52 J3.52 \mathrm{~J} .
D) 3.75 J3.75 \mathrm{~J} .
E) 4.02 J4.02 \mathrm{~J}
Question
A 20.0 kg20.0 \mathrm{~kg} hollow cylinder (I=MR2)\left(\mathrm{I}=\mathrm{MR}^{2}\right) has a diameter of 50.0 cm50.0 \mathrm{~cm} . The cylinder is rolling down a hill with a velocity of 5.00 m/s5.00 \mathrm{~m} / \mathrm{s} . The rotational kinetic energy of the rolling cylinder is

A) 225 J225 \mathrm{~J} .
B) 250 J250 \mathrm{~J} .
C) 150 J150 \mathrm{~J} .
D) 175 J175 \mathrm{~J} .
E) 200 J200 \mathrm{~J} .
Question
A 4.00 kg4.00 \mathrm{~kg} hollow sphere (I=2/3MR2)\left(\mathrm{I}=2 / 3 \mathrm{MR}^{2}\right) is spinning with an angular velocity of 10.0rad/s10.0 \mathrm{rad} / \mathrm{s} . The diameter of the sphere is 20.0 cm20.0 \mathrm{~cm} . The rotational kinetic energy of the spinning sphere is

A) 1.50 J1.50 \mathrm{~J} .
B) 0.90 J0.90 \mathrm{~J} .
C) 1.75 J1.75 \mathrm{~J} .
D) 1.33 J1.33 \mathrm{~J} .
E) 0.75 J0.75 \mathrm{~J} .
Question
A 4.00 kg4.00 \mathrm{~kg} hollow sphere of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the hollow sphere is

A) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s} 2 .
C) 2.22 m/s22.22 \mathrm{~m} / \mathrm{s}^{2} .
D) 2.94 m/s22.94 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.64 m/s22.64 \mathrm{~m} / \mathrm{s}^{2} .
Question
A 4.00 kg4.00 \mathrm{~kg} hollow cylinder of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the cylinder is

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.98 m/s23.98 \mathrm{~m} / \mathrm{s}^{2} .
C) 4.05 m/s24.05 \mathrm{~m} / \mathrm{s}^{2}
D) 2.45 m/s22.45 \mathrm{~m} / \mathrm{s}^{2} .
E) 3.35 m/s23.35 \mathrm{~m} / \mathrm{s}^{2} .
Question
A 4.00 kg4.00 \mathrm{~kg} hollow cylinder of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. If the length of the incline is 50.0 cm50.0 \mathrm{~cm} , then the velocity of the center of mass of the cylinder at the bottom of the incline is

A) 3.02 m/s3.02 \mathrm{~m} / \mathrm{s} .
B) 1.35 m/s1.35 \mathrm{~m} / \mathrm{s} .
C) 2.55 m/s2.55 \mathrm{~m} / \mathrm{s} .
D) 1.82 m/s1.82 \mathrm{~m} / \mathrm{s} .
E) 1.57 m/s1.57 \mathrm{~m} / \mathrm{s}
Question
A 4.00 kg4.00 \mathrm{~kg} solid sphere of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the solid sphere is

A) 3.50 m/s23.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.00 m/s23.00 \mathrm{~m} / \mathrm{s}^{2} .
C) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s}^{2} .
D) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.50 m/s21.50 \mathrm{~m} / \mathrm{s}^{2} .
Question
A 2.00 kg2.00 \mathrm{~kg} solid sphere (I=2/5MR2)\left(\mathrm{I}=2 / 5 \mathrm{MR}^{2}\right) with a diameter of 50.0 cm50.0 \mathrm{~cm} is rotating at an angular velocity of 5.0 rad/s\mathrm{rad} / \mathrm{s} . The angular momentum of the rotating sphere is

A) 0.48 kg m2/s0.48 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
B) 0.25 kg m2/s0.25 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
C) 0.55 kg m2/s0.55 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
D) 0.37 kg m2/s0.37 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
E) 0.20 kg m2/s0.20 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
Question
A grinding wheel has a mass of 250 kg250 \mathrm{~kg} and moment of inertia of 500 kg m2500 \mathrm{~kg} \mathrm{~m}^{2} . A torque of 100 Nm100 \mathrm{~N} \cdot \mathrm{m} is applied to the grinding wheel. If the wheel starts from rest, what is the angular momentum of the wheel after 5.0 seconds?

A) 650 kg m2/s650 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
B) 500 kg m2/s500 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
C) 250 kg m2/s250 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
D) 450 kg m2/s450 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
E) 300 kg m2/s300 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
Question
A 1.5m long dowel (a cylindrical rod) is pivoted about the end so that it is a pendulum of sorts - it can freely swing in a vertical plane. The dowel has a diameter of 2.0 cm2.0 \mathrm{~cm} , and its density is 3.2 g/cm33.2 \mathrm{~g} / \mathrm{cm} 3 . When it is positioned in its swing such that its angle with the vertical is 22.5 degrees, what is the torque on the rod about the pivot due to its weight?

A) 1.7 Nm1.7 \mathrm{~N} \cdot \mathrm{m}
B) 1.0 Nm1.0 \mathrm{~N} \cdot \mathrm{m}
C) 4.2 Nm4.2 \mathrm{~N} \cdot \mathrm{m}
D) 4.4 Nm4.4 \mathrm{~N} \cdot \mathrm{m}
E) 1.1 Nm1.1 \mathrm{~N} \cdot \mathrm{m}
F) 4.1 Nm4.1 \mathrm{~N} \cdot \mathrm{m}
Question
A 1.5 m1.5 \mathrm{~m} long, 0.75 kg0.75 \mathrm{~kg} dowel is pivoted about the end so that it is a pendulum of sorts - it can freely swing in a vertical plane. At the other end of the dowel is a brass weight having mass 1.5 kg1.5 \mathrm{~kg} . (The center of the brass weight is 1.5 m1.5 \mathrm{~m} from the pivot point.) When the rod is positioned in its swing such that its angle with the vertical is 22.5 degrees, what is the net torque on the rod about the pivot?

A) 28 Nm28 \mathrm{~N} \cdot \mathrm{m}
B) 11 Nm11 \mathrm{~N} \cdot \mathrm{m}
C) 25 Nm25 \mathrm{~N} \cdot \mathrm{m}
D) 10.5 Nm10.5 \mathrm{~N} \cdot \mathrm{m}
Question
A 55 kg55 \mathrm{~kg} girl swings on a swing, whose seat is attached to the pivot by 2.5 m2.5 \mathrm{~m} long rigid rods (considered to be massless in this problem). As she swings, she rises to a maximum height such that the angle of the rods with respect to the vertical is 32 degrees. What is the maximum torque on the rods due to her weight, as she moves during one cycle of her swinging from the bottom of her swing path to the highest point?

A) 2400 Nm2400 \mathrm{~N} \cdot \mathrm{m}
B) 710 Nm710 \mathrm{~N} \cdot \mathrm{m}
C) 2000 Nm2000 \mathrm{~N} \cdot \mathrm{m}
D) 970 Nm970 \mathrm{~N} \cdot \mathrm{m}
Question
A 0.50 kg0.50 \mathrm{~kg} solid disk spins at 250rpm250 \mathrm{rpm} . A torque of 12.5 Nm12.5 \mathrm{~N} \cdot \mathrm{m} is applied for 0.150 s0.150 \mathrm{~s} to bring it to rest. What is the disk's radius?

A) 0.29 m0.29 \mathrm{~m}
B) 0.38 m0.38 \mathrm{~m}
C) 0.14 m0.14 \mathrm{~m}
D) 0.54 m0.54 \mathrm{~m}
Question
A person rides a bicycle along a straight road. From the point of view of the rider, what's the direction of the angular momentum vector of the front wheel?

A) left
B) up
C) down
D) backward
E) forward
F) right
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/61
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Torque and Angular Momentum
1
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Z-axis, perpendicular to the X-Y plane, is

A) 68 kg m268 \mathrm{~kg} \mathrm{~m}^{2} .
B) 55 kg m255 \mathrm{~kg} \mathrm{~m}^{2} .
C) 62 kg m262 \mathrm{~kg} \mathrm{~m}^{2} .
D) 50 kg m250 \mathrm{~kg} \mathrm{~m}^{2} .
E) 58 kg m258 \mathrm{~kg} \mathrm{~m}^{2} .
68 kg m268 \mathrm{~kg} \mathrm{~m}^{2} .
2
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X\mathrm{X} -axis, perpendicular to the Z-Y plane, is

A) 28 kg m228 \mathrm{~kg} \mathrm{~m}^{2} .
B) 36 kg m236 \mathrm{~kg} \mathrm{~m}^{2} .
C) 33 kg m233 \mathrm{~kg} \mathrm{~m}^{2} .
D) 23 kg m223 \mathrm{~kg} \mathrm{~m}^{2} .
E) 41 kg m241 \mathrm{~kg} \mathrm{~m}^{2} .
36 kg m236 \mathrm{~kg} \mathrm{~m}^{2} .
3
What is the rotational inertia of a solid iron disk of mass 41.0 kg41.0 \mathrm{~kg} with a thickness of 5.00 cm5.00 \mathrm{~cm} and radius of 30.0 cm30.0 \mathrm{~cm} , about an axis perpendicular to the disk and passing through its center?

A) 0.980 kg m20.980 \mathrm{~kg} \mathrm{~m}^{2}
B) 0.761 kg m20.761 \mathrm{~kg} \mathrm{~m}^{2}
C) 2.29 kg m22.29 \mathrm{~kg} \mathrm{~m}^{2}
D) 1.85 kg m21.85 \mathrm{~kg} \mathrm{~m}^{2}
1.85 kg m21.85 \mathrm{~kg} \mathrm{~m}^{2}
4
A 4.00 kg4.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,0.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1.0 m,3.00(-1.0 \mathrm{~m}, 3.00 m,0.00 m\mathrm{m}, 0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X-axis, perpendicular to the Z-Y plane, is

A) 24 kg m224 \mathrm{~kg} \mathrm{~m}^{2} .
B) 56 kg m256 \mathrm{~kg} \mathrm{~m}^{2} .
C) 62 kg m262 \mathrm{~kg} \mathrm{~m}^{2} .
D) 43 kg m243 \mathrm{~kg} \mathrm{~m}^{2} .
E) 36 kg m236 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
5
A 4.00 kg4.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,0.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1 m,3.00(-1 \mathrm{~m}, 3.00 m,0.00 m\mathrm{m}, 0.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Y-axis, perpendicular to the X-Z plane, is

A) 32 kg m232 \mathrm{~kg} \mathrm{~m}^{2} .
B) 29 kg m229 \mathrm{~kg} \mathrm{~m}^{2} .
C) 40 kg m240 \mathrm{~kg} \mathrm{~m}^{2} .
D) 24 kg m224 \mathrm{~kg} \mathrm{~m}^{2} .
E) 19 kg m219 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
6
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Z-axis, perpendicular to the XY\mathrm{X}-\mathrm{Y} plane, is

A) 98 kg m298 \mathrm{~kg} \mathrm{~m}^{2} .
B) 79 kg m279 \mathrm{~kg} \mathrm{~m}^{2} .
C) 60 kg m260 \mathrm{~kg} \mathrm{~m}^{2} .
D) 112 kg m2112 \mathrm{~kg} \mathrm{~m}^{2} .
E) 85 kg m285 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
7
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the X-axis, perpendicular to the Z-Y plane, is

A) 167 kg m2167 \mathrm{~kg} \mathrm{~m}^{2} .
B) 281 kg m2281 \mathrm{~kg} \mathrm{~m}^{2} .
C) 113 kg m2113 \mathrm{~kg} \mathrm{~m}^{2} .
D) 69 kg m269 \mathrm{~kg} \mathrm{~m}^{2} .
E) 85 kg m285 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
8
A 6.00 kg6.00 \mathrm{~kg} mass is located at (2.00 m,2.00 m,2.00 m)(2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 2.00 \mathrm{~m}) and a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m(-1.0 \mathrm{~m}, 3.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The rotational inertia of this system of masses about the Y-axis, perpendicular to the Z-X plane, is

A) 55 kg m255 \mathrm{~kg} \mathrm{~m}^{2} .
B) 73 kg m273 \mathrm{~kg} \mathrm{~m}^{2} .
C) 60 kg m260 \mathrm{~kg} \mathrm{~m}^{2} .
D) 66 kg m266 \mathrm{~kg} \mathrm{~m}^{2} .
E) 48 kg m248 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
9
The rotational inertia of a thin rod about one end is 1/3ML21 / 3 \mathrm{ML}^{2} . What is the rotational inertia of the same rod about a point located 0.300 L0.300 \mathrm{~L} from the end?

A) 0.300ML20.300 \mathrm{ML}^{2}
B) 0.205ML20.205 \mathrm{ML}^{2}
C) 0.240ML20.240 \mathrm{ML}^{2}
D) 0.198ML20.198 \mathrm{ML}^{2}
E) 0.123ML20.123 \mathrm{ML}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
10
The rotational inertia of a thin rod about one end is 1/3ML21 / 3 \mathrm{ML}^{2} . What is the rotational inertia of the same rod about a point located 0.40 L0.40 \mathrm{~L} from the end?

A) 0.093ML20.093 \mathrm{ML}^{2}
B) 0.493ML20.493 \mathrm{ML}^{2}
C) 0.073ML20.073 \mathrm{ML}^{2}
D) 0.243ML20.243 \mathrm{ML}^{2}
E) 0.056ML20.056 \mathrm{ML}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
11
A 30.0 cm30.0 \mathrm{~cm} wrench is used to generate a torque at a bolt. A force of 40 N40 \mathrm{~N} is applied perpendicularly at the end of the wrench. The torque generated at the bolt is

A) 9.0 Nm9.0 \mathrm{~N} \cdot \mathrm{m} .
B) 7.0 Nm7.0 \mathrm{~N} \cdot \mathrm{m} .
C) 12 Nm12 \mathrm{~N} \cdot \mathrm{m} .
D) 20 Nm20 \mathrm{~N} \cdot \mathrm{m} .
E) 5.0 Nm5.0 \mathrm{~N} \cdot \mathrm{m} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
12
A 30.0 cm30.0 \mathrm{~cm} wrench is used to generate a torque at a bolt. A force of 50.0 N50.0 \mathrm{~N} is applied at the end of the wrench at an angle of 70.0 degrees. The torque generated at the bolt is

A) 10.4 Nm10.4 \mathrm{~N} \cdot \mathrm{m} .
B) 14.1 Nm14.1 \mathrm{~N} \cdot \mathrm{m} .
C) 19.7 Nm19.7 \mathrm{~N} \cdot \mathrm{m} .
D) 26.2 Nm26.2 \mathrm{~N} \cdot \mathrm{m} .
E) 21.5 Nm21.5 \mathrm{~N} \cdot \mathrm{m} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
13
A torque of 20.0 Nm20.0 \mathrm{~N} \cdot \mathrm{m} is applied to a bolt. The bolt rotates through an angle of 180 degrees. The work done in turning the bolt is

A) 49.9 J49.9 \mathrm{~J} .
B) 62.8 J62.8 \mathrm{~J} .
C) 72.5 J72.5 \mathrm{~J} .
D) 51.9 J51.9 \mathrm{~J} .
E) 58.4 J58.4 \mathrm{~J}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
14
A torque of 15.0 Nm15.0 \mathrm{~N} \cdot \mathrm{m} is applied to a bolt. The bolt rotates through an angle of 360 degrees. The work done in turning the bolt is

A) 96.7 J96.7 \mathrm{~J} .
B) 91.3 J91.3 \mathrm{~J} .
C) 98.1 J98.1 \mathrm{~J} .
D) 89.9 J89.9 \mathrm{~J} .
E) 94.2 J94.2 \mathrm{~J} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
15
A 2.00 kg2.00 \mathrm{~kg} mass is located at (4.00 m,0.00 m,0.00 m)(4.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 4.00 kg4.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m(0.00 \mathrm{~m}, 3.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (1.33 m,2.00 m,0)(1.33 \mathrm{~m}, 2.00 \mathrm{~m}, 0) .
B) (1.33 m,1.00 m,0)(1.33 \mathrm{~m}, 1.00 \mathrm{~m}, 0) .
C) (2.00 m,1.33 m,0)(2.00 \mathrm{~m}, 1.33 \mathrm{~m}, 0) .
D) (1.50 m,1.33 m,0)(1.50 \mathrm{~m}, 1.33 \mathrm{~m}, 0) .
E) (1.33 m,1.50 m,0)(1.33 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
16
A 5.00 kg5.00 \mathrm{~kg} mass is located at (2.00 m,0.00 m,0.00 m)(2.00 \mathrm{~m}, 0.00 \mathrm{~m}, 0.00 \mathrm{~m}) and a 3.00 kg3.00 \mathrm{~kg} mass is located at (0.00 m,4.00 m(0.00 \mathrm{~m}, 4.00 \mathrm{~m} , 0.00 m0.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (1.00 m,1.00 m,0)(1.00 \mathrm{~m}, 1.00 \mathrm{~m}, 0) .
B) (1.50 m,1.25 m,0)(1.50 \mathrm{~m}, 1.25 \mathrm{~m}, 0) .
C) (1.25 m,1.50 m,0)(1.25 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
D) (1.25 m,1.25 m,0)(1.25 \mathrm{~m}, 1.25 \mathrm{~m}, 0) .
E) (1.50 m,1.50 m,0)(1.50 \mathrm{~m}, 1.50 \mathrm{~m}, 0) .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
17
A 5.00 kg5.00 \mathrm{~kg} mass is located at ( 2.00 m,0.00 m,3.00 m)2.00 \mathrm{~m}, 0.00 \mathrm{~m}, 3.00 \mathrm{~m}) and a 2.00 kg2.00 \mathrm{~kg} mass is located at (0.00 m,4.00 m(0.00 \mathrm{~m}, 4.00 \mathrm{~m} , 2.00 m-2.00 \mathrm{~m} ). The center of gravity of the system of masses is

A) (7/7 m,10/7 m,11/7 m)(7 / 7 \mathrm{~m}, 10 / 7 \mathrm{~m}, 11 / 7 \mathrm{~m}) .
B) (11/7 m,7/7 m,8/7 m)(11 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}) .
C) (8/7 m,7/7 m,10/7 m)(8 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 10 / 7 \mathrm{~m}) .
D) (10/7 m,7/7 m,8/7 m)(10 / 7 \mathrm{~m}, 7 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}) .
E) (10/7 m,8/7 m,11/7 m)(10 / 7 \mathrm{~m}, 8 / 7 \mathrm{~m}, 11 / 7 \mathrm{~m}) .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
18
A 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,0.00 m,3.00 m)(1.0 \mathrm{~m}, 0.00 \mathrm{~m}, 3.00 \mathrm{~m}) , a 2.00 kg2.00 \mathrm{~kg} mass is located at (0.00 m,3.00 m,2.00(0.00 \mathrm{~m}, 3.00 \mathrm{~m},-2.00 m)\mathrm{m}) , and a 3.00 kg3.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,0.00 m)(-1.0 \mathrm{~m},-2.00 \mathrm{~m}, 0.00 \mathrm{~m}) . The center of gravity of the system of masses is

A) (10/10 m,2/10 m,3/10 m)(10 / 10 \mathrm{~m}, 2 / 10 \mathrm{~m}, 3 / 10 \mathrm{~m}) .
B) (1/10 m,10/10 m,1/10 m)(1 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}, 1 / 10 \mathrm{~m}) .
C) (3/10 m,2/10 m,10/10 m)(3 / 10 \mathrm{~m}, 2 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}) .
D) (2/10 m,0 m,11/10 m)(2 / 10 \mathrm{~m}, 0 \mathrm{~m}, 11 / 10 \mathrm{~m}) .
E) (2/10 m,10/10 m,0 m)(2 / 10 \mathrm{~m}, 10 / 10 \mathrm{~m}, 0 \mathrm{~m}) .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
19
A 6.00 kg6.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,3.00 m)(1.0 \mathrm{~m},-2.00 \mathrm{~m}, 3.00 \mathrm{~m}) , a 5.00 kg5.00 \mathrm{~kg} mass is located at (1.0 m,3.00 m,2.00(1.0 \mathrm{~m}, 3.00 \mathrm{~m},-2.00 m)\mathrm{m}) , and a 4.00 kg4.00 \mathrm{~kg} mass is located at (1.0 m,2.00 m,2.00 m)(-1.0 \mathrm{~m},-2.00 \mathrm{~m}, 2.00 \mathrm{~m}) . The center of gravity of the system of masses is

A) (5/15 m,17/15 m,5/15 m)(5 / 15 \mathrm{~m},-17 / 15 \mathrm{~m}, 5 / 15 \mathrm{~m}) .
B) (12/15 m,5/15 m,16/15 m)(12 / 15 \mathrm{~m},-5 / 15 \mathrm{~m}, 16 / 15 \mathrm{~m}) .
C) (7/15 m,5/15 m,16/15 m)(7 / 15 \mathrm{~m},-5 / 15 \mathrm{~m}, 16 / 15 \mathrm{~m}) .
D) (16/15 m,1/15 m,17/15 m)(16 / 15 \mathrm{~m},-1 / 15 \mathrm{~m}, 17 / 15 \mathrm{~m}) .
E) (5/15 m,1/15 m,17/15 m)(5 / 15 \mathrm{~m},-1 / 15 \mathrm{~m}, 17 / 15 \mathrm{~m}) .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
20
A 1.500 m1.500 \mathrm{~m} long uniform beam of mass 30.00 kg30.00 \mathrm{~kg} is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A 50.00 kg50.00 \mathrm{~kg} mass, m\mathrm{m} , is attached to the end of the beam. What is the tension in the wire?
 <strong>A  1.500 \mathrm{~m}  long uniform beam of mass  30.00 \mathrm{~kg}  is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A  50.00 \mathrm{~kg}  mass,  \mathrm{m} , is attached to the end of the beam. What is the tension in the wire?  </strong> A)  1,855 \mathrm{~N}  B)  1,255 \mathrm{~N}  C)  1,435 \mathrm{~N}  D)  2,034 \mathrm{~N}  E)  1,035 \mathrm{~N}

A) 1,855 N1,855 \mathrm{~N}
B) 1,255 N1,255 \mathrm{~N}
C) 1,435 N1,435 \mathrm{~N}
D) 2,034 N2,034 \mathrm{~N}
E) 1,035 N1,035 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
21
A 1.500 m1.500 \mathrm{~m} long uniform beam of mass 30.00 kg30.00 \mathrm{~kg} is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A 50.00 kg50.00 \mathrm{~kg} mass, m\mathrm{m} , is attached to the end of the beam. What are the vertical and horizontal components of the force of the wall on the beam at the hinge?
 <strong>A  1.500 \mathrm{~m}  long uniform beam of mass  30.00 \mathrm{~kg}  is supported by a wire as shown in the figure. The beam makes an angle of 10.00 degrees with the horizontal and the wire makes an angle of 30.00 degrees with the beam. A  50.00 \mathrm{~kg}  mass,  \mathrm{m} , is attached to the end of the beam. What are the vertical and horizontal components of the force of the wall on the beam at the hinge?  </strong> A)  \mathrm{H}=1,458 \mathrm{~N}, \mathrm{~V}=454.0 \mathrm{~N}  B)  \mathrm{H}=750 \mathrm{~N}, \mathrm{~V}=297.3 \mathrm{~N}  C)  \mathrm{H}=1,300 \mathrm{~N}, \mathrm{~V}=403.4 \mathrm{~N}  D)  \mathrm{H}=979 \mathrm{~N}, \mathrm{~V}=324.5 \mathrm{~N}  E)  \mathrm{H}=1,179 \mathrm{~N}, \mathrm{~V}=354.9 \mathrm{~N}

A) H=1,458 N, V=454.0 N\mathrm{H}=1,458 \mathrm{~N}, \mathrm{~V}=454.0 \mathrm{~N}
B) H=750 N, V=297.3 N\mathrm{H}=750 \mathrm{~N}, \mathrm{~V}=297.3 \mathrm{~N}
C) H=1,300 N, V=403.4 N\mathrm{H}=1,300 \mathrm{~N}, \mathrm{~V}=403.4 \mathrm{~N}
D) H=979 N, V=324.5 N\mathrm{H}=979 \mathrm{~N}, \mathrm{~V}=324.5 \mathrm{~N}
E) H=1,179 N, V=354.9 N\mathrm{H}=1,179 \mathrm{~N}, \mathrm{~V}=354.9 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
22
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.20 m1.20 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the vertical force of the ground on the ladder?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.20 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the vertical force of the ground on the ladder?  </strong> A)  735 \mathrm{~N}  B)  832 \mathrm{~N}  C)  625 \mathrm{~N}  D)  900 \mathrm{~N}  E)  640 \mathrm{~N}

A) 735 N735 \mathrm{~N}
B) 832 N832 \mathrm{~N}
C) 625 N625 \mathrm{~N}
D) 900 N900 \mathrm{~N}
E) 640 N640 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
23
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.20 m1.20 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.20 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.800 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?  </strong> A) 40.55 degrees B) 30.34 degrees C) 26.57 degrees D) 36.35 degrees E) 46.52 degrees

A) 40.55 degrees
B) 30.34 degrees
C) 26.57 degrees
D) 36.35 degrees
E) 46.52 degrees
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
24
A 75.0 kg75.0 \mathrm{~kg} ladder that is 3.00 m3.00 \mathrm{~m} long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point 1.2 m1.2 \mathrm{~m} from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.400 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?
 <strong>A  75.0 \mathrm{~kg}  ladder that is  3.00 \mathrm{~m}  long is placed against a wall at an angle theta. The center of gravity of the ladder is at a point  1.2 \mathrm{~m}  from the base of the ladder. The coefficient of static friction at the base of the ladder is 0.400 . There is no friction between the wall and the ladder. What is the minimum angle the ladder must make with the horizontal for the ladder not to slip and fall?  </strong> A) 35 degrees B) 53 degrees C) 45 degrees D) 60 degrees E) 65 degrees

A) 35 degrees
B) 53 degrees
C) 45 degrees
D) 60 degrees
E) 65 degrees
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
25
A 10 kg10 \mathrm{~kg} object has a moment of inertia of 1.25 kg m21.25 \mathrm{~kg} \mathrm{~m}^{2} . If a torque of 2.5 Nm2.5 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} .
B) 4.0rad/s24.0 \mathrm{rad} / \mathrm{s}^{2} .
C) 8.0rad/s28.0 \mathrm{rad} / \mathrm{s}^{2} .
D) 10rad/s210 \mathrm{rad} / \mathrm{s}^{2} .
E) 6.0rad/s26.0 \mathrm{rad} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
26
A 8.0 kg8.0 \mathrm{~kg} object has a moment of inertia of 1.00 kg m21.00 \mathrm{~kg} \mathrm{~m}^{2} . What torque is needed to give the object an angular acceleration of 1.5rad/s21.5 \mathrm{rad} / \mathrm{s} 2 ?

A) 1.0 Nm1.0 \mathrm{~N} \cdot \mathrm{m}
B) 2.5 Nm2.5 \mathrm{~N} \cdot \mathrm{m}
C) 2.0 Nm2.0 \mathrm{~N} \cdot \mathrm{m}
D) 3.0 Nm3.0 \mathrm{~N} \cdot \mathrm{m}
E) 1.5 Nm1.5 \mathrm{~N} \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
27
A 10 kg10 \mathrm{~kg} sphere with a 25.0 cm25.0 \mathrm{~cm} radius has a moment of inertia of 2/5MR22 / 5 \mathrm{MR} 2 . If a torque of 2.0 Nm2.0 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} .
B) 4.0rad/s24.0 \mathrm{rad} / \mathrm{s}^{2} .
C) 8.0rad/s28.0 \mathrm{rad} / \mathrm{s}^{2} .
D) 1.0rad/s21.0 \mathrm{rad} / \mathrm{s}^{2} .
E) 6.0rad/s26.0 \mathrm{rad} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
28
An 8.00 kg8.00 \mathrm{~kg} object has a moment of inertia of 1.50 kg m21.50 \mathrm{~kg} \mathrm{~m}^{2} . If a torque of 2.00 Nm2.00 \mathrm{~N} \cdot \mathrm{m} is applied to the object, the angular acceleration is

A) 1.33rad/s21.33 \mathrm{rad} / \mathrm{s}^{2} .
B) 1.00rad/s21.00 \mathrm{rad} / \mathrm{s}^{2} .
C) 2.01rad/s22.01 \mathrm{rad} / \mathrm{s}^{2} .
D) 0.750rad/s20.750 \mathrm{rad} / \mathrm{s}^{2} .
E) 2.67rad/s22.67 \mathrm{rad} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
29
A 5.00 kg5.00 \mathrm{~kg} object has a moment of inertia of 1.20 kg m21.20 \mathrm{~kg} \mathrm{~m}^{2} . What torque is needed to give the object an angular acceleration of 2.0rad/s22.0 \mathrm{rad} / \mathrm{s}^{2} ?

A) 3.0 Nm3.0 \mathrm{~N} \cdot \mathrm{m}
B) 2.6 Nm2.6 \mathrm{~N} \cdot \mathrm{m}
C) 2.4 Nm2.4 \mathrm{~N} \cdot \mathrm{m}
D) 3.2 Nm3.2 \mathrm{~N} \cdot \mathrm{m}
E) 2.8 Nm2.8 \mathrm{~N} \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
30
A 10 kg10 \mathrm{~kg} solid cylinder with a 50.0 cm50.0 \mathrm{~cm} radius has a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If a torque of 2.0 Nm2.0 \mathrm{~N} \bullet \mathrm{m} is applied to the object, the angular acceleration is

A) 1.8rad/s21.8 \mathrm{rad} / \mathrm{s}^{2} .
B) 1.6rad/s21.6 \mathrm{rad} / \mathrm{s}^{2} .
C) 2.3rad/s22.3 \mathrm{rad} / \mathrm{s}^{2} .
D) 1.0rad/s21.0 \mathrm{rad} / \mathrm{s}^{2} .
E) 2.1rad/s22.1 \mathrm{rad} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
31
A torque of 2.00 Nm2.00 \mathrm{~N} \cdot \mathrm{m} is applied to a 10.0 kg10.0 \mathrm{~kg} object to give it an angular acceleration. If the angular acceleration is 1.75rad/s21.75 \mathrm{rad} / \mathrm{s}^{2} , then the moment of inertia is

A) 1.35 kg m21.35 \mathrm{~kg} \mathrm{~m}^{2} .
B) 1.05 kg m21.05 \mathrm{~kg} \mathrm{~m}^{2} .
C) 1.20 kg m21.20 \mathrm{~kg} \mathrm{~m}^{2} .
D) 1.14 kg m21.14 \mathrm{~kg} \mathrm{~m}^{2} .
E) 1.95 kg m21.95 \mathrm{~kg} \mathrm{~m}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
32
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the downward acceleration of  m_{1}  ?  </strong> A)  2.72 \mathrm{~m} / \mathrm{s}^{2}  B)  1.55 \mathrm{~m} / \mathrm{s}^{2}  C)  1.96 \mathrm{~m} / \mathrm{s}^{2}  D)  2.06 \mathrm{~m} / \mathrm{s}^{2}  E)  2.33 \mathrm{~m} / \mathrm{s}^{2}

A) 2.72 m/s22.72 \mathrm{~m} / \mathrm{s}^{2}
B) 1.55 m/s21.55 \mathrm{~m} / \mathrm{s}^{2}
C) 1.96 m/s21.96 \mathrm{~m} / \mathrm{s}^{2}
D) 2.06 m/s22.06 \mathrm{~m} / \mathrm{s}^{2}
E) 2.33 m/s22.33 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
33
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  m_{1}  ?  </strong> A)  6.83 \mathrm{~N}  B)  8.02 \mathrm{~N}  C)  8.33 \mathrm{~N}  D)  7.03 \mathrm{~N}  E)  7.84 \mathrm{~N}

A) 6.83 N6.83 \mathrm{~N}
B) 8.02 N8.02 \mathrm{~N}
C) 8.33 N8.33 \mathrm{~N}
D) 7.03 N7.03 \mathrm{~N}
E) 7.84 N7.84 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
34
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{2}  ?  </strong> A)  2.98 \mathrm{~m} / \mathrm{s}^{2}  B)  3.23 \mathrm{~m} / \mathrm{s}^{2}  C)  3.02 \mathrm{~m} / \mathrm{s}^{2}  D)  3.92 \mathrm{~m} / \mathrm{s}^{2}  E)  3.65 \mathrm{~m} / \mathrm{s}^{2}

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2}
B) 3.23 m/s23.23 \mathrm{~m} / \mathrm{s}^{2}
C) 3.02 m/s23.02 \mathrm{~m} / \mathrm{s}^{2}
D) 3.92 m/s23.92 \mathrm{~m} / \mathrm{s}^{2}
E) 3.65 m/s23.65 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
35
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25 cm25 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg2.00 \mathrm{~kg} , and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg} , and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the downward acceleration of  \mathrm{m}_{1}  ?  </strong> A)  4.9 \mathrm{~m} / \mathrm{s}^{2}  B)  4.5 \mathrm{~m} / \mathrm{s}^{2}  C)  3.7 \mathrm{~m} / \mathrm{s}^{2}  D)  4.1 \mathrm{~m} / \mathrm{s}^{2}  E)  3.9 \mathrm{~m} / \mathrm{s}^{2}

A) 4.9 m/s24.9 \mathrm{~m} / \mathrm{s}^{2}
B) 4.5 m/s24.5 \mathrm{~m} / \mathrm{s}^{2}
C) 3.7 m/s23.7 \mathrm{~m} / \mathrm{s}^{2}
D) 4.1 m/s24.1 \mathrm{~m} / \mathrm{s}^{2}
E) 3.9 m/s23.9 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
36
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the downward acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the downward acceleration of  m_{1}  ?  </strong> A)  3.92 \mathrm{~m} / \mathrm{s}^{2}  B)  3.04 \mathrm{~m} / \mathrm{s}^{2}  C)  2.96 \mathrm{~m} / \mathrm{s}^{2}  D)  4.42 \mathrm{~m} / \mathrm{s}^{2}  E)  3.42 \mathrm{~m} / \mathrm{s}^{2}

A) 3.92 m/s23.92 \mathrm{~m} / \mathrm{s}^{2}
B) 3.04 m/s23.04 \mathrm{~m} / \mathrm{s}^{2}
C) 2.96 m/s22.96 \mathrm{~m} / \mathrm{s}^{2}
D) 4.42 m/s24.42 \mathrm{~m} / \mathrm{s}^{2}
E) 3.42 m/s23.42 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
37
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{1}  ?  </strong> A)  32.7 \mathrm{~N}  B)  31.0 \mathrm{~N}  C)  29.0 \mathrm{~N}  D)  23.5 \mathrm{~N}  E)  35.6 \mathrm{~N}

A) 32.7 N32.7 \mathrm{~N}
B) 31.0 N31.0 \mathrm{~N}
C) 29.0 N29.0 \mathrm{~N}
D) 23.5 N23.5 \mathrm{~N}
E) 35.6 N35.6 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
38
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg4.00 \mathrm{~kg} , and M is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg} , and M is  4.00 \mathrm{~kg} , then what is the tension in the string attached to  \mathrm{m}_{2}  ?  </strong> A)  12.6 \mathrm{~N}  B)  15.7 \mathrm{~N}  C)  19.8 \mathrm{~N}  D)  10.4 \mathrm{~N}  E)  17.6 \mathrm{~N}

A) 12.6 N12.6 \mathrm{~N}
B) 15.7 N15.7 \mathrm{~N}
C) 19.8 N19.8 \mathrm{~N}
D) 10.4 N10.4 \mathrm{~N}
E) 17.6 N17.6 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
39
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?  </strong> A)  0.695 \mathrm{~m} / \mathrm{s}^{2}  B)  0.754 \mathrm{~m} / \mathrm{s}^{2}  C)  0.805 \mathrm{~m} / \mathrm{s}^{2}  D)  0.703 \mathrm{~m} / \mathrm{s}^{2}  E)  0.731 \mathrm{~m} / \mathrm{s}^{2}

A) 0.695 m/s20.695 \mathrm{~m} / \mathrm{s}^{2}
B) 0.754 m/s20.754 \mathrm{~m} / \mathrm{s}^{2}
C) 0.805 m/s20.805 \mathrm{~m} / \mathrm{s}^{2}
D) 0.703 m/s20.703 \mathrm{~m} / \mathrm{s}^{2}
E) 0.731 m/s20.731 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
40
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the tension in the string that is attached to m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the tension in the string that is attached to  m_{1}  ?  </strong> A)  58.2 \mathrm{~N}  B)  74.5 \mathrm{~N}  C)  36.2 \mathrm{~N}  D)  44.6 \mathrm{~N}  E)  60.6 \mathrm{~N}

A) 58.2 N58.2 \mathrm{~N}
B) 74.5 N74.5 \mathrm{~N}
C) 36.2 N36.2 \mathrm{~N}
D) 44.6 N44.6 \mathrm{~N}
E) 60.6 N60.6 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
41
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 3.00 kg3.00 \mathrm{~kg} and M\mathrm{M} is 6.00 kg6.00 \mathrm{~kg} , then what is the tension in the string that is attached to m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  3.00 \mathrm{~kg}  and  \mathrm{M}  is  6.00 \mathrm{~kg} , then what is the tension in the string that is attached to  \mathrm{m}_{2}  ?  </strong> A)  41.3 \mathrm{~N}  B)  20.7 \mathrm{~N}  C)  31.7 \mathrm{~N}  D)  25.5 \mathrm{~N}  E)  35.2 \mathrm{~N}

A) 41.3 N41.3 \mathrm{~N}
B) 20.7 N20.7 \mathrm{~N}
C) 31.7 N31.7 \mathrm{~N}
D) 25.5 N25.5 \mathrm{~N}
E) 35.2 N35.2 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
42
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 12MR2\frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the magnitude of the acceleration of the masses?  </strong> A)  2.67 \mathrm{~m} / \mathrm{s}^{2}  B)  4.05 \mathrm{~m} / \mathrm{s}^{2}  C)  5.05 \mathrm{~m} / \mathrm{s}^{2}  D)  3.44 \mathrm{~m} / \mathrm{s}^{2}  E)  4.75 \mathrm{~m} / \mathrm{s}^{2}

A) 2.67 m/s22.67 \mathrm{~m} / \mathrm{s}^{2}
B) 4.05 m/s24.05 \mathrm{~m} / \mathrm{s}^{2}
C) 5.05 m/s25.05 \mathrm{~m} / \mathrm{s}^{2}
D) 3.44 m/s23.44 \mathrm{~m} / \mathrm{s}^{2}
E) 4.75 m/s24.75 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
43
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass m1\mathrm{m}_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass  \mathrm{m}_{1}  ?  </strong> A)  27.4 \mathrm{~N}  B)  37.4 \mathrm{~N}  C)  30.2 \mathrm{~N}  D)  43.5 \mathrm{~N}  E)  20.8 \mathrm{~N}

A) 27.4 N27.4 \mathrm{~N}
B) 37.4 N37.4 \mathrm{~N}
C) 30.2 N30.2 \mathrm{~N}
D) 43.5 N43.5 \mathrm{~N}
E) 20.8 N20.8 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
44
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of 20.0 cm20.0 \mathrm{~cm} and a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 3.00 kg, m23.00 \mathrm{~kg}, \mathrm{~m}_{2} is 6.00 kg6.00 \mathrm{~kg} and M\mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass m2\mathrm{m}_{2} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  as shown in the figure. Both masses move vertically and there is no slippage between the string and the pulley. The pulley has a radius of  20.0 \mathrm{~cm}  and a moment of inertia of  1 \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  3.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  6.00 \mathrm{~kg}  and  \mathrm{M}  is  4.00 \mathrm{~kg} , then what is the tension in the string that is attached to mass  \mathrm{m}_{2}  ?  </strong> A)  63.4 \mathrm{~N}  B)  42.8 \mathrm{~N}  C)  33.6 \mathrm{~N}  D)  53.6 \mathrm{~N}  E)  75.5 \mathrm{~N}

A) 63.4 N63.4 \mathrm{~N}
B) 42.8 N42.8 \mathrm{~N}
C) 33.6 N33.6 \mathrm{~N}
D) 53.6 N53.6 \mathrm{~N}
E) 75.5 N75.5 \mathrm{~N}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
45
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 2.00 kg, m22.00 \mathrm{~kg}, \mathrm{~m}_{2} is 1.00 kg,M1.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 / 2 \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  2.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  1.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  3.27 \mathrm{~m} / \mathrm{s}^{2}  down B)  2.94 \mathrm{~m} / \mathrm{s}^{2}  down C)  1.64 \mathrm{~m} / \mathrm{s}^{2}  down D)  3.98 \mathrm{~m} / \mathrm{s}^{2}  down E)  3.15 \mathrm{~m} / \mathrm{s}^{2}  down

A) 3.27 m/s23.27 \mathrm{~m} / \mathrm{s}^{2} down
B) 2.94 m/s22.94 \mathrm{~m} / \mathrm{s}^{2} down
C) 1.64 m/s21.64 \mathrm{~m} / \mathrm{s}^{2} down
D) 3.98 m/s23.98 \mathrm{~m} / \mathrm{s}^{2} down
E) 3.15 m/s23.15 \mathrm{~m} / \mathrm{s}^{2} down
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
46
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm25.0 \mathrm{~cm} and a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 1.00 kg, m21.00 \mathrm{~kg}, \mathrm{~m}_{2} is 2.00 kg,M2.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  25.0 \mathrm{~cm}  and a moment of inertia of  1 \frac{1}{2} \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  1.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  2.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 60.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  0.00 \mathrm{~m} / \mathrm{s}^{2}  B)  2.20 \mathrm{~m} / \mathrm{s}^{2}  C)  1.20 \mathrm{~m} / \mathrm{s}^{2}  D)  1.80 \mathrm{~m} / \mathrm{s}^{2}  E)  2.80 \mathrm{~m} / \mathrm{s}^{2}

A) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2}
B) 2.20 m/s22.20 \mathrm{~m} / \mathrm{s}^{2}
C) 1.20 m/s21.20 \mathrm{~m} / \mathrm{s}^{2}
D) 1.80 m/s21.80 \mathrm{~m} / \mathrm{s}^{2}
E) 2.80 m/s22.80 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
47
A mass m1m_{1} is connected by a light string that passes over a pulley of mass MM to a mass m2m_{2} sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm30.0 \mathrm{~cm} and a moment of inertia of MR2\mathrm{MR}^{2} . If m1\mathrm{m}_{1} is 4.00 kg, m24.00 \mathrm{~kg}, \mathrm{~m}_{2} is 4.00 kg,M4.00 \mathrm{~kg}, \mathrm{M} is 4.00 kg4.00 \mathrm{~kg} , and the angle is 70.0 degrees, then what is the acceleration of m1m_{1} ?
 <strong>A mass  m_{1}  is connected by a light string that passes over a pulley of mass  M  to a mass  m_{2}  sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of  30.0 \mathrm{~cm}  and a moment of inertia of  \mathrm{MR}^{2} . If  \mathrm{m}_{1}  is  4.00 \mathrm{~kg}, \mathrm{~m}_{2}  is  4.00 \mathrm{~kg}, \mathrm{M}  is  4.00 \mathrm{~kg} , and the angle is 70.0 degrees, then what is the acceleration of  m_{1}  ?  </strong> A)  2.15 \mathrm{~m} / \mathrm{s}^{2}  down B)  3.10 \mathrm{~m} / \mathrm{s}^{2}  down C)  2.43 \mathrm{~m} / \mathrm{s}^{2}  down D)  2.89 \mathrm{~m} / \mathrm{s}^{2}  down E)  1.49 \mathrm{~m} / \mathrm{s}^{2}  down

A) 2.15 m/s22.15 \mathrm{~m} / \mathrm{s}^{2} down
B) 3.10 m/s23.10 \mathrm{~m} / \mathrm{s}^{2} down
C) 2.43 m/s22.43 \mathrm{~m} / \mathrm{s}^{2} down
D) 2.89 m/s22.89 \mathrm{~m} / \mathrm{s}^{2} down
E) 1.49 m/s21.49 \mathrm{~m} / \mathrm{s}^{2} down
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
48
A 4.00 kg4.00 \mathrm{~kg} solid sphere ( I=2/5MR2)\left.\mathrm{I}=2 / 5 \mathrm{MR}^{2}\right) is spinning with an angular velocity of 23.0rad/s23.0 \mathrm{rad} / \mathrm{s} . The diameter of the sphere is 20.0 cm20.0 \mathrm{~cm} . The rotational kinetic energy of the spinning sphere is

A) 4.23 J4.23 \mathrm{~J} .
B) 3.02 J3.02 \mathrm{~J} .
C) 3.52 J3.52 \mathrm{~J} .
D) 3.75 J3.75 \mathrm{~J} .
E) 4.02 J4.02 \mathrm{~J}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
49
A 20.0 kg20.0 \mathrm{~kg} hollow cylinder (I=MR2)\left(\mathrm{I}=\mathrm{MR}^{2}\right) has a diameter of 50.0 cm50.0 \mathrm{~cm} . The cylinder is rolling down a hill with a velocity of 5.00 m/s5.00 \mathrm{~m} / \mathrm{s} . The rotational kinetic energy of the rolling cylinder is

A) 225 J225 \mathrm{~J} .
B) 250 J250 \mathrm{~J} .
C) 150 J150 \mathrm{~J} .
D) 175 J175 \mathrm{~J} .
E) 200 J200 \mathrm{~J} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
50
A 4.00 kg4.00 \mathrm{~kg} hollow sphere (I=2/3MR2)\left(\mathrm{I}=2 / 3 \mathrm{MR}^{2}\right) is spinning with an angular velocity of 10.0rad/s10.0 \mathrm{rad} / \mathrm{s} . The diameter of the sphere is 20.0 cm20.0 \mathrm{~cm} . The rotational kinetic energy of the spinning sphere is

A) 1.50 J1.50 \mathrm{~J} .
B) 0.90 J0.90 \mathrm{~J} .
C) 1.75 J1.75 \mathrm{~J} .
D) 1.33 J1.33 \mathrm{~J} .
E) 0.75 J0.75 \mathrm{~J} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
51
A 4.00 kg4.00 \mathrm{~kg} hollow sphere of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the hollow sphere is

A) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s} 2 .
C) 2.22 m/s22.22 \mathrm{~m} / \mathrm{s}^{2} .
D) 2.94 m/s22.94 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.64 m/s22.64 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
52
A 4.00 kg4.00 \mathrm{~kg} hollow cylinder of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the cylinder is

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.98 m/s23.98 \mathrm{~m} / \mathrm{s}^{2} .
C) 4.05 m/s24.05 \mathrm{~m} / \mathrm{s}^{2}
D) 2.45 m/s22.45 \mathrm{~m} / \mathrm{s}^{2} .
E) 3.35 m/s23.35 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
53
A 4.00 kg4.00 \mathrm{~kg} hollow cylinder of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. If the length of the incline is 50.0 cm50.0 \mathrm{~cm} , then the velocity of the center of mass of the cylinder at the bottom of the incline is

A) 3.02 m/s3.02 \mathrm{~m} / \mathrm{s} .
B) 1.35 m/s1.35 \mathrm{~m} / \mathrm{s} .
C) 2.55 m/s2.55 \mathrm{~m} / \mathrm{s} .
D) 1.82 m/s1.82 \mathrm{~m} / \mathrm{s} .
E) 1.57 m/s1.57 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
54
A 4.00 kg4.00 \mathrm{~kg} solid sphere of radius 5.00 cm5.00 \mathrm{~cm} starts from rest and rolls without slipping down a 30.0 degree incline. The acceleration of the center of mass of the solid sphere is

A) 3.50 m/s23.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.00 m/s23.00 \mathrm{~m} / \mathrm{s}^{2} .
C) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s}^{2} .
D) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.50 m/s21.50 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
55
A 2.00 kg2.00 \mathrm{~kg} solid sphere (I=2/5MR2)\left(\mathrm{I}=2 / 5 \mathrm{MR}^{2}\right) with a diameter of 50.0 cm50.0 \mathrm{~cm} is rotating at an angular velocity of 5.0 rad/s\mathrm{rad} / \mathrm{s} . The angular momentum of the rotating sphere is

A) 0.48 kg m2/s0.48 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
B) 0.25 kg m2/s0.25 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
C) 0.55 kg m2/s0.55 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
D) 0.37 kg m2/s0.37 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
E) 0.20 kg m2/s0.20 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} .
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
56
A grinding wheel has a mass of 250 kg250 \mathrm{~kg} and moment of inertia of 500 kg m2500 \mathrm{~kg} \mathrm{~m}^{2} . A torque of 100 Nm100 \mathrm{~N} \cdot \mathrm{m} is applied to the grinding wheel. If the wheel starts from rest, what is the angular momentum of the wheel after 5.0 seconds?

A) 650 kg m2/s650 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
B) 500 kg m2/s500 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
C) 250 kg m2/s250 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
D) 450 kg m2/s450 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
E) 300 kg m2/s300 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
57
A 1.5m long dowel (a cylindrical rod) is pivoted about the end so that it is a pendulum of sorts - it can freely swing in a vertical plane. The dowel has a diameter of 2.0 cm2.0 \mathrm{~cm} , and its density is 3.2 g/cm33.2 \mathrm{~g} / \mathrm{cm} 3 . When it is positioned in its swing such that its angle with the vertical is 22.5 degrees, what is the torque on the rod about the pivot due to its weight?

A) 1.7 Nm1.7 \mathrm{~N} \cdot \mathrm{m}
B) 1.0 Nm1.0 \mathrm{~N} \cdot \mathrm{m}
C) 4.2 Nm4.2 \mathrm{~N} \cdot \mathrm{m}
D) 4.4 Nm4.4 \mathrm{~N} \cdot \mathrm{m}
E) 1.1 Nm1.1 \mathrm{~N} \cdot \mathrm{m}
F) 4.1 Nm4.1 \mathrm{~N} \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
58
A 1.5 m1.5 \mathrm{~m} long, 0.75 kg0.75 \mathrm{~kg} dowel is pivoted about the end so that it is a pendulum of sorts - it can freely swing in a vertical plane. At the other end of the dowel is a brass weight having mass 1.5 kg1.5 \mathrm{~kg} . (The center of the brass weight is 1.5 m1.5 \mathrm{~m} from the pivot point.) When the rod is positioned in its swing such that its angle with the vertical is 22.5 degrees, what is the net torque on the rod about the pivot?

A) 28 Nm28 \mathrm{~N} \cdot \mathrm{m}
B) 11 Nm11 \mathrm{~N} \cdot \mathrm{m}
C) 25 Nm25 \mathrm{~N} \cdot \mathrm{m}
D) 10.5 Nm10.5 \mathrm{~N} \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
59
A 55 kg55 \mathrm{~kg} girl swings on a swing, whose seat is attached to the pivot by 2.5 m2.5 \mathrm{~m} long rigid rods (considered to be massless in this problem). As she swings, she rises to a maximum height such that the angle of the rods with respect to the vertical is 32 degrees. What is the maximum torque on the rods due to her weight, as she moves during one cycle of her swinging from the bottom of her swing path to the highest point?

A) 2400 Nm2400 \mathrm{~N} \cdot \mathrm{m}
B) 710 Nm710 \mathrm{~N} \cdot \mathrm{m}
C) 2000 Nm2000 \mathrm{~N} \cdot \mathrm{m}
D) 970 Nm970 \mathrm{~N} \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
60
A 0.50 kg0.50 \mathrm{~kg} solid disk spins at 250rpm250 \mathrm{rpm} . A torque of 12.5 Nm12.5 \mathrm{~N} \cdot \mathrm{m} is applied for 0.150 s0.150 \mathrm{~s} to bring it to rest. What is the disk's radius?

A) 0.29 m0.29 \mathrm{~m}
B) 0.38 m0.38 \mathrm{~m}
C) 0.14 m0.14 \mathrm{~m}
D) 0.54 m0.54 \mathrm{~m}
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
61
A person rides a bicycle along a straight road. From the point of view of the rider, what's the direction of the angular momentum vector of the front wheel?

A) left
B) up
C) down
D) backward
E) forward
F) right
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 61 flashcards in this deck.