Deck 6: Frequency Response

Full screen (f)
exit full mode
Question
A common-source amplifier is fed from a signal source having a resistance Rsig=100kΩR_{\mathrm{sig}}=100 \mathrm{k} \Omega and has a load resistance RL=100kΩR_{L}=100 \mathrm{k} \Omega . The MOSFET has Cgs=0.1pF,Cgd=50fF,gm=1 mA/VC_{g s}=0.1 \mathrm{pF}, C_{g d}=50 \mathrm{fF}, g_{m}=1 \mathrm{~mA} / \mathrm{V} , and ro=r_{o}= 100kΩ100 \mathrm{k} \Omega . The total capacitance between the output node and ground is CL=0.1pFC_{L}=0.1 \mathrm{pF} .
(a) Find the midband gain.
(b) Use the method of open-circuit time constants to obtain an estimate of the upper 3-dB frequency, fHf_{H} .
Use Space or
up arrow
down arrow
to flip the card.
Question
(a) Sketch the high-frequency equivalent circuit of a common-emitter amplifier that is fed with a voltage signal source Vsig V_{\text {sig }} having a resistance Rsig R_{\text {sig }} and that is loaded with a resistance RLR_{L} . In addition to the internal capacitances of the BJT, CπC_{\pi} and CμC_{\mu} , there is a capacitance CLC_{L} between the output node and ground.
(b) If the transistor is biased at IC=0.1 mAI_{C}=0.1 \mathrm{~mA} and has β=100,VA=40 V,fT=500MHz\beta=100, V_{A}=40 \mathrm{~V}, f_{T}=500 \mathrm{MHz} , and Cμ=C_{\mu}= 0.27pF0.27 \mathrm{pF} , find the values of gm,rπ,rog_{m}, r_{\pi}, r_{o} , and CπC_{\pi} .
(c) Use the method of open-circuit time-constants to obtain an estimate for the upper 3-dB frequency, fHf_{H} , for the case Rsig =25kΩ,RL=25kΩR_{\text {sig }}=25 \mathrm{k} \Omega, R_{L}=25 \mathrm{k} \Omega , and CL=0.5pFC_{L}=0.5 \mathrm{pF} . Also, find the midband gain.
Question
(a) An NMOS common-source amplifier with a simple PMOS current-source load has a total capacitance at the output node of CL=10pFC_{L}=10 \mathrm{pF} . If the resistance of the signal source is very small, find the dc gain, the 3-dB frequency, and the gainbandwidth product, provided that gm=1 mA/Vg_{m}=1 \mathrm{~mA} / \mathrm{V} and rO=20kΩr_{O}=20 \mathrm{k} \Omega for each of the two transistors.
(b) If, in the circuit in (a), a cascode transistor is added to both the amplifier and the current-source load, find the new values of the dc\mathrm{dc} gain, f3 dBf_{3 \mathrm{~dB}} , and the gain-bandwidth product. Assume that all transistors have the same gmg_{m} and ror_{o} as in (a) and that the total capacitance at the output node remains unchanged.
Question
    Figure 10.4.1 For the cascode amplifier in Fig. 10.4.1 (with the dc bias circuitry not shown),  g_{m 1}=g_{m 2}=   2.5 \mathrm{~mA} / \mathrm{V}, r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega, C_{g s 1}=C_{g s 2}=   20 \mathrm{fF}, C_{g d 1}=C_{g d 2}=5 \mathrm{fF}, C_{d b 1}=C_{d b 2}=5 \mathrm{fF} ,  C_{L}=5 \mathrm{fF} , and  R_{\mathrm{sig}}=10 \mathrm{k} \Omega . Investigate two designs, one that results in a de gain of  60 \mathrm{~dB}  and one that provides a dc gain of  40 \mathrm{~dB} . For each case, find the required value of  R_{L} , the resulting 3 -dB frequency  f_{H} , and the gain-bandwidth product. Comment on the tradeoff between gain and bandwidth.<div style=padding-top: 35px>

Figure 10.4.1
For the cascode amplifier in Fig. 10.4.1 (with the dc bias circuitry not shown), gm1=gm2=g_{m 1}=g_{m 2}= 2.5 mA/V,ro1=ro2=20kΩ,Cgs1=Cgs2=2.5 \mathrm{~mA} / \mathrm{V}, r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega, C_{g s 1}=C_{g s 2}= 20fF,Cgd1=Cgd2=5fF,Cdb1=Cdb2=5fF20 \mathrm{fF}, C_{g d 1}=C_{g d 2}=5 \mathrm{fF}, C_{d b 1}=C_{d b 2}=5 \mathrm{fF} , CL=5fFC_{L}=5 \mathrm{fF} , and Rsig=10kΩR_{\mathrm{sig}}=10 \mathrm{k} \Omega . Investigate two designs, one that results in a de gain of 60 dB60 \mathrm{~dB} and one that provides a dc gain of 40 dB40 \mathrm{~dB} . For each case, find the required value of RLR_{L} , the resulting 3 -dB frequency fHf_{H} , and the gain-bandwidth product. Comment on the tradeoff between gain and bandwidth.
Question
    Figure 10.5.1    Figure 10.5.2 (a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at  g_{m}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o}=20 \mathrm{k} \Omega  and has  R_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as  C_{g s}=40 \mathrm{fF}  and  C_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground,  C_{L}=10 \mathrm{fF} . Find the overall de gain  G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency  f_{H} , and the gain-bandwidth product  f_{t} . To determine  f_{H} , use the method of open-circuit time constants and recall that the resistance seen by  C_{g d}  is given by  R_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where  R_{L}^{\prime}=R_{L} \| r_{o} . (b) To increase  f_{t} , the common-source transistor  Q_{1}  is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of  R_{\mathrm{sig}}, R_{L} , and  C_{L}  as in (a), assuming  Q_{1}  and  Q_{2}  are biased so that  g_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of  Q_{1}  and  Q_{2}  to have the same values as specified in (a) above, find  G_{v}, f_{H} , and  f_{t}  for the cascode amplifier. Recall that  R_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o}  and  R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} . In using the open-circuit time-constants method, adapt the formula given in (a) for  R_{g d}  to obtain  R_{g d 1} . By what factor is  f_{t}  increased?<div style=padding-top: 35px>

Figure 10.5.1
    Figure 10.5.1    Figure 10.5.2 (a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at  g_{m}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o}=20 \mathrm{k} \Omega  and has  R_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as  C_{g s}=40 \mathrm{fF}  and  C_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground,  C_{L}=10 \mathrm{fF} . Find the overall de gain  G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency  f_{H} , and the gain-bandwidth product  f_{t} . To determine  f_{H} , use the method of open-circuit time constants and recall that the resistance seen by  C_{g d}  is given by  R_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where  R_{L}^{\prime}=R_{L} \| r_{o} . (b) To increase  f_{t} , the common-source transistor  Q_{1}  is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of  R_{\mathrm{sig}}, R_{L} , and  C_{L}  as in (a), assuming  Q_{1}  and  Q_{2}  are biased so that  g_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of  Q_{1}  and  Q_{2}  to have the same values as specified in (a) above, find  G_{v}, f_{H} , and  f_{t}  for the cascode amplifier. Recall that  R_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o}  and  R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} . In using the open-circuit time-constants method, adapt the formula given in (a) for  R_{g d}  to obtain  R_{g d 1} . By what factor is  f_{t}  increased?<div style=padding-top: 35px>

Figure 10.5.2
(a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at gm=2 mA/Vg_{m}=2 \mathrm{~mA} / \mathrm{V} and ro=20kΩr_{o}=20 \mathrm{k} \Omega and has Rsig =RL=20kΩR_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as Cgs=40fFC_{g s}=40 \mathrm{fF} and Cgd=Cdb=10fFC_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground, CL=10fFC_{L}=10 \mathrm{fF} . Find the overall de gain GvVo/Vsig G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency fHf_{H} , and the gain-bandwidth product ftf_{t} . To determine fHf_{H} , use the method of open-circuit time constants and recall that the resistance seen by CgdC_{g d} is given by Rgd=(1+gmRL)Rsig +RLR_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where RL=RLroR_{L}^{\prime}=R_{L} \| r_{o} .
(b) To increase ftf_{t} , the common-source transistor Q1Q_{1} is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of Rsig,RLR_{\mathrm{sig}}, R_{L} , and CLC_{L} as in (a), assuming Q1Q_{1} and Q2Q_{2} are biased so that gm1=gm2=2 mA/Vg_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V} and ro1=ro2=20kΩr_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of Q1Q_{1} and Q2Q_{2} to have the same values as specified in (a) above, find Gv,fHG_{v}, f_{H} , and ftf_{t} for the cascode amplifier. Recall that Rout (gmro)roR_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o} and Rin 2=1gm2+RLgm2ro2R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} .
In using the open-circuit time-constants method, adapt the formula given in (a) for RgdR_{g d} to obtain Rgd1R_{g d 1} . By what factor is ftf_{t} increased?
Question
The MOSFET in the common-source amplifier in Fig. 10.6.1
 The MOSFET in the common-source amplifier in Fig. 10.6.1    Figure 10.6.1 has  g_{m}=   5 \mathrm{~mA} / \mathrm{V}, r_{o}=20 \mathrm{k} \Omega, C_{g s}=5 \mathrm{pF} , and  C_{g d}=1 \mathrm{pF} , and the total capacitance at the output node,  C_{L} , is  10 \mathrm{pF} . (a) Find the value of the midband voltage gain. (b) Use the method of short-circuit time constants to determine the lower 3-dB frequency,  f_{L} . Which capacitor dominates the determination of  f_{L}  ? (c) Use the method of open-circuit time constants to determine the upper 3-dB frequency,  f_{H} . Which capacitor dominates the determination of  f_{H}  ?<div style=padding-top: 35px>

Figure 10.6.1
has gm=g_{m}= 5 mA/V,ro=20kΩ,Cgs=5pF5 \mathrm{~mA} / \mathrm{V}, r_{o}=20 \mathrm{k} \Omega, C_{g s}=5 \mathrm{pF} , and Cgd=1pFC_{g d}=1 \mathrm{pF} , and the total capacitance at the output node, CLC_{L} , is 10pF10 \mathrm{pF} .
(a) Find the value of the midband voltage gain.
(b) Use the method of short-circuit time constants to determine the lower 3-dB frequency, fLf_{L} . Which capacitor dominates the determination of fLf_{L} ?
(c) Use the method of open-circuit time constants to determine the upper 3-dB frequency, fHf_{H} . Which capacitor dominates the determination of fHf_{H} ?
Question
The amplifier in Fig. 10.7.1
 The amplifier in Fig. 10.7.1    Figure 10.7.1 has  R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10   \mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and  V_{C C}=15 \mathrm{~V} . (a) Assuming  \beta=\infty , find  R_{B 1}, R_{B 2}, R_{E} , and  R_{C}  to operate the BJT at a dc bias point characterized by  I_{C}=1 \mathrm{~mA}  and  V_{C}=7 \mathrm{~V} . Design for  V_{B}=5 \mathrm{~V}  and a voltage-divider current of  0.1 \mathrm{~mA} . (b) Find  r_{e}, g_{m} , and  r_{\pi} , assuming  \beta=100 . (c) At midband frequencies, find  R_{\text {in }}, V_{b} / V_{\text {sig }} ,  V_{o} / V_{b} , and  V_{o} / V_{\text {sig }} , assuming  \beta=100 . (d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency,  f_{L} . (e) If  C_{\pi}=10 \mathrm{pF}  and  C_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency  3 \mathrm{~dB}  frequency,  f_{H} .<div style=padding-top: 35px>

Figure 10.7.1
has Rsig =1kΩ,CB=1μF,CE=10R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10 μF,CC=1μF,RL=8kΩ,VBE=0.7 V\mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and VCC=15 VV_{C C}=15 \mathrm{~V} .
(a) Assuming β=\beta=\infty , find RB1,RB2,RER_{B 1}, R_{B 2}, R_{E} , and RCR_{C} to operate the BJT at a dc bias point characterized by IC=1 mAI_{C}=1 \mathrm{~mA} and VC=7 VV_{C}=7 \mathrm{~V} . Design for VB=5 VV_{B}=5 \mathrm{~V} and a voltage-divider current of 0.1 mA0.1 \mathrm{~mA} .
(b) Find re,gmr_{e}, g_{m} , and rπr_{\pi} , assuming β=100\beta=100 .
(c) At midband frequencies, find Rin ,Vb/Vsig R_{\text {in }}, V_{b} / V_{\text {sig }} , Vo/VbV_{o} / V_{b} , and Vo/Vsig V_{o} / V_{\text {sig }} , assuming β=100\beta=100 .
(d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency, fLf_{L} .
(e) If Cπ=10pFC_{\pi}=10 \mathrm{pF} and Cμ=1pFC_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency 3 dB3 \mathrm{~dB} frequency, fHf_{H} .
Question
For the amplifier circuit in Fig. 10.8.1
 For the amplifier circuit in Fig. 10.8.1    , assume that the BJT has  V_{B E}=   0.7 \mathrm{~V}  and  \beta=100  and neglect the Early effect. (a) Find the dc bias current  I_{C}  and the de collector voltage  V_{C} . (b) Give the small-signal equivalent circuit together with values of all its components, utilizing the T model for the BJT. (c) Find the input resistance  R_{\text {in }} . (d) Find output resistance  R_{\text {out }} . (e) Find the overall midband gain  V_{o} / V_{\text {sig. }} . (f) Use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency  f_{L} .<div style=padding-top: 35px>

, assume that the BJT has VBE=V_{B E}= 0.7 V0.7 \mathrm{~V} and β=100\beta=100 and neglect the Early effect.
(a) Find the dc bias current ICI_{C} and the de collector voltage VCV_{C} .
(b) Give the small-signal equivalent circuit together with values of all its components, utilizing the T model for the BJT.
(c) Find the input resistance Rin R_{\text {in }} .
(d) Find output resistance Rout R_{\text {out }} .
(e) Find the overall midband gain Vo/Vsig. V_{o} / V_{\text {sig. }} .
(f) Use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency fLf_{L} .
Question
The MOSFET in the common-source amplifier in Fig. 10.9.1
 The MOSFET in the common-source amplifier in Fig. 10.9.1    Figure 10.9.1 is operating at  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and has  C_{g s}=1 \mathrm{pF}  and  C_{g d}=0.2 \mathrm{pF} . Channel-length modulation is negligibly small. (a) Find the midband voltge gain in  \mathrm{dB} . (b) Find the upper 3-dB frequency,  f_{H} . (c) Find the value of  C_{G}  that places the pole it introduces at  1 \mathrm{~Hz} . (d) Find the value of  C_{S}  that places the pole it introduces at  100 \mathrm{~Hz}  (e) Find the value of  C_{D}  that places the pole it introduces at  10 \mathrm{~Hz} . (f) Sketch and carefully label the Bode plot for the gain magnitude. Specify the lower 3-dB frequency,  f_{L} .<div style=padding-top: 35px>

Figure 10.9.1
is operating at gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and has Cgs=1pFC_{g s}=1 \mathrm{pF} and Cgd=0.2pFC_{g d}=0.2 \mathrm{pF} . Channel-length modulation is negligibly small.
(a) Find the midband voltge gain in dB\mathrm{dB} .
(b) Find the upper 3-dB frequency, fHf_{H} .
(c) Find the value of CGC_{G} that places the pole it introduces at 1 Hz1 \mathrm{~Hz} .
(d) Find the value of CSC_{S} that places the pole it introduces at 100 Hz100 \mathrm{~Hz}
(e) Find the value of CDC_{D} that places the pole it introduces at 10 Hz10 \mathrm{~Hz} .
(f) Sketch and carefully label the Bode plot for the gain magnitude. Specify the lower 3-dB frequency, fLf_{L} .
Question
    In the common-source amplifier shown in Fig. 10.10.1, the signal source has a zero average and provides de continuity to ground. The MOSFET has  V_{t}=1 \mathrm{~V}  and  k_{n}=16 \mathrm{~mA} / \mathrm{V}^{2} . (a) Find the value of  g_{m}  at which the device is operating. (b) Find the midband gain  V_{o} / V_{\text {sig }}  in  \mathrm{V} / \mathrm{V}  and in dB. (c) Find the value of  C_{S}  that places the lower 3-dB frequency  \omega_{L}  at  100 \mathrm{rad} / \mathrm{s} . (d) If  C_{g s}=1 \mathrm{pF}  and  C_{g d}=0.2 \mathrm{pF} , find the value of the upper  3-\mathrm{dB}  frequency,  \omega_{H} . (e) It is desired to double  \omega_{H}  by changing the value of  g_{m}  (through changing the bias current  I  ), find the required value of  I , the new value of the midband gain (in  \mathrm{V} / \mathrm{V}  and in  \mathrm{dB}  ), and the new value of  \omega_{L} .<div style=padding-top: 35px>

In the common-source amplifier shown in Fig. 10.10.1, the signal source has a zero average and provides de continuity to ground. The MOSFET has Vt=1 VV_{t}=1 \mathrm{~V} and kn=16 mA/V2k_{n}=16 \mathrm{~mA} / \mathrm{V}^{2} .
(a) Find the value of gmg_{m} at which the device is operating.
(b) Find the midband gain Vo/Vsig V_{o} / V_{\text {sig }} in V/V\mathrm{V} / \mathrm{V} and in dB.
(c) Find the value of CSC_{S} that places the lower 3-dB frequency ωL\omega_{L} at 100rad/s100 \mathrm{rad} / \mathrm{s} .
(d) If Cgs=1pFC_{g s}=1 \mathrm{pF} and Cgd=0.2pFC_{g d}=0.2 \mathrm{pF} , find the value of the upper 3dB3-\mathrm{dB} frequency, ωH\omega_{H} .
(e) It is desired to double ωH\omega_{H} by changing the value of gmg_{m} (through changing the bias current II ), find the required value of II , the new value of the midband gain (in V/V\mathrm{V} / \mathrm{V} and in dB\mathrm{dB} ), and the new value of ωL\omega_{L} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/10
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Frequency Response
1
A common-source amplifier is fed from a signal source having a resistance Rsig=100kΩR_{\mathrm{sig}}=100 \mathrm{k} \Omega and has a load resistance RL=100kΩR_{L}=100 \mathrm{k} \Omega . The MOSFET has Cgs=0.1pF,Cgd=50fF,gm=1 mA/VC_{g s}=0.1 \mathrm{pF}, C_{g d}=50 \mathrm{fF}, g_{m}=1 \mathrm{~mA} / \mathrm{V} , and ro=r_{o}= 100kΩ100 \mathrm{k} \Omega . The total capacitance between the output node and ground is CL=0.1pFC_{L}=0.1 \mathrm{pF} .
(a) Find the midband gain.
(b) Use the method of open-circuit time constants to obtain an estimate of the upper 3-dB frequency, fHf_{H} .
Refer to Figure 10.1.1
 Refer to Figure 10.1.1    Figure 10.1.1 (a) At midband frequencies,  \begin{aligned} \frac{V_{o}}{V_{\text {sig }}} & =-g_{m}\left(r_{o} \| R_{L}\right) \\ & =-1 \times(100 \| 100) \\ & =-50 \mathrm{~V} / \mathrm{V} \end{aligned}  (b) Capacitor  C_{g s}  sees a resistance  R_{g_{s}}=R_{\mathrm{sig}}=100 \mathrm{k} \Omega  Thus,  \begin{aligned} \tau_{g s} & =C_{g s} R_{g s} \\ & =0.1 \times 10^{-12} \times 100 \times 10^{3} \\ & =10 \mathrm{~ns} \end{aligned}  Capacitor  C_{g d}  sees a resistance  R_{g d}=R_{L}^{\prime}+R_{\text {sig }}\left(1+g_{m} R_{L}^{\prime}\right)  where  R_{L}^{\prime}=r_{o}\left\|R_{L}=100\right\| 100=50 \mathrm{k} \Omega  Thus,  \begin{aligned} R_{g d} & =50+100 \times(1+1 \times 50) \\ & =5150 \mathrm{k} \Omega \end{aligned}  and  \begin{aligned} \tau_{g d} & =C_{g d} R_{g d} \\ & =50 \times 10^{-15} \times 5150 \times 10^{3} \\ & =257.5 \mathrm{~ns} \end{aligned}  Capacitor  C_{L}  sees a resistance  R_{C L}=R_{L}\left\|r_{O}=100\right\| 100=50 \mathrm{k} \Omega  Thus,  \begin{aligned} \tau_{C L} & =C_{L} R_{C L} \\ & =0.1 \times 10^{-12} \times 50 \times 10^{3} \\ & =5 \mathrm{~ns} \end{aligned}  Finally,  \begin{aligned} \tau_{H} & =\tau_{g s}+\tau_{g d}+\tau_{C L} \\ & =10+257.5+5 \\ & =272.5 \mathrm{~ns} \end{aligned}  and  \begin{aligned} f_{H} & =\frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 272.5 \times 10^{-9}} \\ & =584 \mathrm{kHz} \end{aligned}

Figure 10.1.1
(a) At midband frequencies,
VoVsig =gm(roRL)=1×(100100)=50 V/V\begin{aligned}\frac{V_{o}}{V_{\text {sig }}} & =-g_{m}\left(r_{o} \| R_{L}\right) \\& =-1 \times(100 \| 100) \\& =-50 \mathrm{~V} / \mathrm{V}\end{aligned}
(b) Capacitor CgsC_{g s} sees a resistance
Rgs=Rsig=100kΩR_{g_{s}}=R_{\mathrm{sig}}=100 \mathrm{k} \Omega
Thus,
τgs=CgsRgs=0.1×1012×100×103=10 ns\begin{aligned}\tau_{g s} & =C_{g s} R_{g s} \\& =0.1 \times 10^{-12} \times 100 \times 10^{3} \\& =10 \mathrm{~ns}\end{aligned}
Capacitor CgdC_{g d} sees a resistance
Rgd=RL+Rsig (1+gmRL)R_{g d}=R_{L}^{\prime}+R_{\text {sig }}\left(1+g_{m} R_{L}^{\prime}\right)
where
RL=roRL=100100=50kΩR_{L}^{\prime}=r_{o}\left\|R_{L}=100\right\| 100=50 \mathrm{k} \Omega
Thus,
Rgd=50+100×(1+1×50)=5150kΩ\begin{aligned}R_{g d} & =50+100 \times(1+1 \times 50) \\& =5150 \mathrm{k} \Omega\end{aligned}
and
τgd=CgdRgd=50×1015×5150×103=257.5 ns\begin{aligned}\tau_{g d} & =C_{g d} R_{g d} \\& =50 \times 10^{-15} \times 5150 \times 10^{3} \\& =257.5 \mathrm{~ns}\end{aligned}
Capacitor CLC_{L} sees a resistance
RCL=RLrO=100100=50kΩR_{C L}=R_{L}\left\|r_{O}=100\right\| 100=50 \mathrm{k} \Omega
Thus,
τCL=CLRCL=0.1×1012×50×103=5 ns\begin{aligned}\tau_{C L} & =C_{L} R_{C L} \\& =0.1 \times 10^{-12} \times 50 \times 10^{3} \\& =5 \mathrm{~ns}\end{aligned}
Finally,
τH=τgs+τgd+τCL=10+257.5+5=272.5 ns\begin{aligned}\tau_{H} & =\tau_{g s}+\tau_{g d}+\tau_{C L} \\& =10+257.5+5 \\& =272.5 \mathrm{~ns}\end{aligned}
and
fH=12πτH=12π×272.5×109=584kHz\begin{aligned}f_{H} & =\frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 272.5 \times 10^{-9}} \\& =584 \mathrm{kHz}\end{aligned}
2
(a) Sketch the high-frequency equivalent circuit of a common-emitter amplifier that is fed with a voltage signal source Vsig V_{\text {sig }} having a resistance Rsig R_{\text {sig }} and that is loaded with a resistance RLR_{L} . In addition to the internal capacitances of the BJT, CπC_{\pi} and CμC_{\mu} , there is a capacitance CLC_{L} between the output node and ground.
(b) If the transistor is biased at IC=0.1 mAI_{C}=0.1 \mathrm{~mA} and has β=100,VA=40 V,fT=500MHz\beta=100, V_{A}=40 \mathrm{~V}, f_{T}=500 \mathrm{MHz} , and Cμ=C_{\mu}= 0.27pF0.27 \mathrm{pF} , find the values of gm,rπ,rog_{m}, r_{\pi}, r_{o} , and CπC_{\pi} .
(c) Use the method of open-circuit time-constants to obtain an estimate for the upper 3-dB frequency, fHf_{H} , for the case Rsig =25kΩ,RL=25kΩR_{\text {sig }}=25 \mathrm{k} \Omega, R_{L}=25 \mathrm{k} \Omega , and CL=0.5pFC_{L}=0.5 \mathrm{pF} . Also, find the midband gain.
(a) The high-frequency equivalent circuit is shown in Fig. 10.2.1 below.
 (a) The high-frequency equivalent circuit is shown in Fig. 10.2.1 below.    Figure 10.2.1 (b)  \begin{aligned} I_{C} & =0.1 \mathrm{~mA}, \quad \beta=100, \quad V_{A}=40 \mathrm{~V} \\ f_{T} & =500 \mathrm{MHz}, \quad C_{\mu}=0.27 \mathrm{pF} \\ g_{m} & =\frac{I_{C}}{V_{T}}=\frac{0.1}{0.025}=4 \mathrm{~mA} / \mathrm{V} \\ r_{\pi} & =\frac{\beta}{g_{m}}=\frac{100}{4}=25 \mathrm{k} \Omega \\ r_{o} & =\frac{V_{A}}{I_{C}}=\frac{40}{0.1}=400 \mathrm{k} \Omega \\ C_{\pi}+C_{\mu} & =\frac{g_{m}}{\omega_{T}}=\frac{4 \times 10^{-3}}{2 \pi \times 500 \times 10^{6}}=1.27 \mathrm{pF} \\ \Rightarrow C_{\pi} & =1 \mathrm{pF} \end{aligned}  (c) Capacitor  C_{\pi}  sees a resistance  R_{\pi}   \begin{aligned} R_{\pi} & =r_{\pi} \| R_{\text {sig }} \\ & =25 \| 25 \\ & =12.5 \mathrm{k} \Omega \end{aligned}  Capacitor  C_{\mu}  sees a resistance  R_{\mu} ,  R_{\mu}=R_{L}^{\prime}+R_{\text {sig }}^{\prime}\left(1+g_{m} R_{L}^{\prime}\right)  where  \begin{aligned} R_{L}^{\prime} & =R_{L}\left\|r_{o}=25\right\| 400=23.5 \mathrm{k} \Omega \\ R_{\text {sig }}^{\prime} & =R_{\text {sig }} \| r_{\pi} \\ & =25 \| 25=12.5 \mathrm{k} \Omega \end{aligned}  Thus,  \begin{aligned} R_{\mu} & =23.5+12.5(1+4 \times 23.5) \\ & =1211 \mathrm{k} \Omega \end{aligned}  Capacitor  C_{L}  sees a resistance  R_{L}^{\prime} ,  R_{L}^{\prime}=R_{L}\left\|r_{O}=25\right\| 400=23.5 \mathrm{k} \Omega  Now,  \begin{aligned} \tau_{H}= & C_{\pi} R_{\pi}+C_{\mu} R_{\mu}+C_{L} R_{L}^{\prime} \\ = & 1 \times 10^{-12} \times 12.5 \times 10^{3}+0.27 \times 10^{-12} \\ & \times 1211 \times 10^{3}+0.5 \times 10^{-12} \times 23.5 \times 10^{3} \\ = & 12.5 \times 10^{-9}+327 \times 10^{-9}+11.75 \times 10^{-9} \\ = & 351.2 \mathrm{~ns} \\ f_{H}= & \frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 351.2 \times 10^{-9}} \\ = & 453 \mathrm{kHz} \\ A_{M}= & \frac{V_{o}}{V_{\text {sig }}}=\frac{r_{\pi}}{r_{\pi}+R_{\text {sig }}} \times-g_{m} R_{L}^{\prime} \\ = & \frac{25}{25+25} \times-4 \times 23.5 \\ = & -47 \mathrm{~V} / \mathrm{V} \end{aligned}

Figure 10.2.1
(b)
IC=0.1 mA,β=100,VA=40 VfT=500MHz,Cμ=0.27pFgm=ICVT=0.10.025=4 mA/Vrπ=βgm=1004=25kΩro=VAIC=400.1=400kΩCπ+Cμ=gmωT=4×1032π×500×106=1.27pFCπ=1pF\begin{aligned}I_{C} & =0.1 \mathrm{~mA}, \quad \beta=100, \quad V_{A}=40 \mathrm{~V} \\f_{T} & =500 \mathrm{MHz}, \quad C_{\mu}=0.27 \mathrm{pF} \\g_{m} & =\frac{I_{C}}{V_{T}}=\frac{0.1}{0.025}=4 \mathrm{~mA} / \mathrm{V} \\r_{\pi} & =\frac{\beta}{g_{m}}=\frac{100}{4}=25 \mathrm{k} \Omega \\r_{o} & =\frac{V_{A}}{I_{C}}=\frac{40}{0.1}=400 \mathrm{k} \Omega \\C_{\pi}+C_{\mu} & =\frac{g_{m}}{\omega_{T}}=\frac{4 \times 10^{-3}}{2 \pi \times 500 \times 10^{6}}=1.27 \mathrm{pF} \\\Rightarrow C_{\pi} & =1 \mathrm{pF}\end{aligned}
(c) Capacitor CπC_{\pi} sees a resistance RπR_{\pi}
Rπ=rπRsig =2525=12.5kΩ\begin{aligned}R_{\pi} & =r_{\pi} \| R_{\text {sig }} \\& =25 \| 25 \\& =12.5 \mathrm{k} \Omega\end{aligned}
Capacitor CμC_{\mu} sees a resistance RμR_{\mu} ,
Rμ=RL+Rsig (1+gmRL)R_{\mu}=R_{L}^{\prime}+R_{\text {sig }}^{\prime}\left(1+g_{m} R_{L}^{\prime}\right)
where
RL=RLro=25400=23.5kΩRsig =Rsig rπ=2525=12.5kΩ\begin{aligned}R_{L}^{\prime} & =R_{L}\left\|r_{o}=25\right\| 400=23.5 \mathrm{k} \Omega \\R_{\text {sig }}^{\prime} & =R_{\text {sig }} \| r_{\pi} \\& =25 \| 25=12.5 \mathrm{k} \Omega\end{aligned}
Thus,
Rμ=23.5+12.5(1+4×23.5)=1211kΩ\begin{aligned}R_{\mu} & =23.5+12.5(1+4 \times 23.5) \\& =1211 \mathrm{k} \Omega\end{aligned}
Capacitor CLC_{L} sees a resistance RLR_{L}^{\prime} ,
RL=RLrO=25400=23.5kΩR_{L}^{\prime}=R_{L}\left\|r_{O}=25\right\| 400=23.5 \mathrm{k} \Omega
Now,
τH=CπRπ+CμRμ+CLRL=1×1012×12.5×103+0.27×1012×1211×103+0.5×1012×23.5×103=12.5×109+327×109+11.75×109=351.2 nsfH=12πτH=12π×351.2×109=453kHzAM=VoVsig =rπrπ+Rsig ×gmRL=2525+25×4×23.5=47 V/V\begin{aligned}\tau_{H}= & C_{\pi} R_{\pi}+C_{\mu} R_{\mu}+C_{L} R_{L}^{\prime} \\= & 1 \times 10^{-12} \times 12.5 \times 10^{3}+0.27 \times 10^{-12} \\& \times 1211 \times 10^{3}+0.5 \times 10^{-12} \times 23.5 \times 10^{3} \\= & 12.5 \times 10^{-9}+327 \times 10^{-9}+11.75 \times 10^{-9} \\= & 351.2 \mathrm{~ns} \\f_{H}= & \frac{1}{2 \pi \tau_{H}}=\frac{1}{2 \pi \times 351.2 \times 10^{-9}} \\= & 453 \mathrm{kHz} \\A_{M}= & \frac{V_{o}}{V_{\text {sig }}}=\frac{r_{\pi}}{r_{\pi}+R_{\text {sig }}} \times-g_{m} R_{L}^{\prime} \\= & \frac{25}{25+25} \times-4 \times 23.5 \\= & -47 \mathrm{~V} / \mathrm{V}\end{aligned}
3
(a) An NMOS common-source amplifier with a simple PMOS current-source load has a total capacitance at the output node of CL=10pFC_{L}=10 \mathrm{pF} . If the resistance of the signal source is very small, find the dc gain, the 3-dB frequency, and the gainbandwidth product, provided that gm=1 mA/Vg_{m}=1 \mathrm{~mA} / \mathrm{V} and rO=20kΩr_{O}=20 \mathrm{k} \Omega for each of the two transistors.
(b) If, in the circuit in (a), a cascode transistor is added to both the amplifier and the current-source load, find the new values of the dc\mathrm{dc} gain, f3 dBf_{3 \mathrm{~dB}} , and the gain-bandwidth product. Assume that all transistors have the same gmg_{m} and ror_{o} as in (a) and that the total capacitance at the output node remains unchanged.
(a)
 (a)    Figure 10.3.1 shows the amplifier together with its output equivalent circuit. The dc gain is given by  \begin{aligned} \frac{V_{o}}{V_{\text {sig }}} & =-g_{m}\left(r_{o 1} \| r_{o 2}\right) \\ & =-g_{m}\left(r_{o} \| r_{o}\right)=-\frac{1}{2} g_{m} r_{o} \\ & =-\frac{1}{2} \times 1 \times 20=-10 \mathrm{~V} / \mathrm{V} \end{aligned}  The 3-dB frequency is determined from the equivalent circuit as  \begin{aligned} f_{3 d B} & =\frac{1}{2 \pi C_{L}\left(r_{O 1} \| r_{O 2}\right)} \\ & =\frac{1}{2 \pi C_{L} \times \frac{1}{2} \times r_{O}} \\ & =\frac{1}{\pi \times 10 \times 10^{-12} \times 20 \times 10^{3}} \\ & =1.6 \mathrm{MHz} \\ \mathrm{GB} & =10 \times 1.6=16 \mathrm{MHz} \end{aligned}  (b) Figure 10.3.2 shows the cascode amplifier together with its output equivalent circuit. The dc gain is given by  \frac{V_{o}}{V_{\text {sig }}}=-g_{m 1}\left(R_{o 2} \| R_{o 3}\right)  where  \begin{aligned} & g_{m 1}=g_{m}=1 \mathrm{~mA} / \mathrm{V} \\ & R_{o 2}=R_{o 3}=\left(g_{m} r_{o}\right) r_{o}=(1 \times 20) \times 20=400 \mathrm{k} \Omega \end{aligned}  Thus,  \frac{V_{o}}{V_{\text {sig }}}=-1 \times(400 \| 400)=-200 \mathrm{~V} / \mathrm{V}  The 3-dB frequency is determined from the equivalent circuit as  \begin{aligned} f_{3 d B} & =\frac{1}{2 \pi C_{L}\left(R_{O 2} \|\left(R_{O 3}\right)\right.} \\ & =\frac{1}{2 \pi \times 10 \times 10^{-12} \times(400 \| 400) \times 10^{3}} \\ & =80 \mathrm{kHz} \\ \mathrm{GB} & =200 \times 80 \times 10^{3}=16 \mathrm{MHz} \end{aligned}

Figure 10.3.1 shows the amplifier together with its output equivalent circuit. The dc gain is given by
VoVsig =gm(ro1ro2)=gm(roro)=12gmro=12×1×20=10 V/V\begin{aligned}\frac{V_{o}}{V_{\text {sig }}} & =-g_{m}\left(r_{o 1} \| r_{o 2}\right) \\& =-g_{m}\left(r_{o} \| r_{o}\right)=-\frac{1}{2} g_{m} r_{o} \\& =-\frac{1}{2} \times 1 \times 20=-10 \mathrm{~V} / \mathrm{V}\end{aligned}
The 3-dB frequency is determined from the equivalent circuit as
f3dB=12πCL(rO1rO2)=12πCL×12×rO=1π×10×1012×20×103=1.6MHzGB=10×1.6=16MHz\begin{aligned}f_{3 d B} & =\frac{1}{2 \pi C_{L}\left(r_{O 1} \| r_{O 2}\right)} \\& =\frac{1}{2 \pi C_{L} \times \frac{1}{2} \times r_{O}} \\& =\frac{1}{\pi \times 10 \times 10^{-12} \times 20 \times 10^{3}} \\& =1.6 \mathrm{MHz} \\\mathrm{GB} & =10 \times 1.6=16 \mathrm{MHz}\end{aligned}
(b)
Figure 10.3.2 shows the cascode amplifier together with its output equivalent circuit. The dc gain is given by
VoVsig =gm1(Ro2Ro3)\frac{V_{o}}{V_{\text {sig }}}=-g_{m 1}\left(R_{o 2} \| R_{o 3}\right)
where
gm1=gm=1 mA/VRo2=Ro3=(gmro)ro=(1×20)×20=400kΩ\begin{aligned}& g_{m 1}=g_{m}=1 \mathrm{~mA} / \mathrm{V} \\& R_{o 2}=R_{o 3}=\left(g_{m} r_{o}\right) r_{o}=(1 \times 20) \times 20=400 \mathrm{k} \Omega\end{aligned}
Thus,
VoVsig =1×(400400)=200 V/V\frac{V_{o}}{V_{\text {sig }}}=-1 \times(400 \| 400)=-200 \mathrm{~V} / \mathrm{V}
The 3-dB frequency is determined from the equivalent circuit as
f3dB=12πCL(RO2(RO3)=12π×10×1012×(400400)×103=80kHzGB=200×80×103=16MHz\begin{aligned}f_{3 d B} & =\frac{1}{2 \pi C_{L}\left(R_{O 2} \|\left(R_{O 3}\right)\right.} \\& =\frac{1}{2 \pi \times 10 \times 10^{-12} \times(400 \| 400) \times 10^{3}} \\& =80 \mathrm{kHz} \\\mathrm{GB} & =200 \times 80 \times 10^{3}=16 \mathrm{MHz}\end{aligned}
4
    Figure 10.4.1 For the cascode amplifier in Fig. 10.4.1 (with the dc bias circuitry not shown),  g_{m 1}=g_{m 2}=   2.5 \mathrm{~mA} / \mathrm{V}, r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega, C_{g s 1}=C_{g s 2}=   20 \mathrm{fF}, C_{g d 1}=C_{g d 2}=5 \mathrm{fF}, C_{d b 1}=C_{d b 2}=5 \mathrm{fF} ,  C_{L}=5 \mathrm{fF} , and  R_{\mathrm{sig}}=10 \mathrm{k} \Omega . Investigate two designs, one that results in a de gain of  60 \mathrm{~dB}  and one that provides a dc gain of  40 \mathrm{~dB} . For each case, find the required value of  R_{L} , the resulting 3 -dB frequency  f_{H} , and the gain-bandwidth product. Comment on the tradeoff between gain and bandwidth.

Figure 10.4.1
For the cascode amplifier in Fig. 10.4.1 (with the dc bias circuitry not shown), gm1=gm2=g_{m 1}=g_{m 2}= 2.5 mA/V,ro1=ro2=20kΩ,Cgs1=Cgs2=2.5 \mathrm{~mA} / \mathrm{V}, r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega, C_{g s 1}=C_{g s 2}= 20fF,Cgd1=Cgd2=5fF,Cdb1=Cdb2=5fF20 \mathrm{fF}, C_{g d 1}=C_{g d 2}=5 \mathrm{fF}, C_{d b 1}=C_{d b 2}=5 \mathrm{fF} , CL=5fFC_{L}=5 \mathrm{fF} , and Rsig=10kΩR_{\mathrm{sig}}=10 \mathrm{k} \Omega . Investigate two designs, one that results in a de gain of 60 dB60 \mathrm{~dB} and one that provides a dc gain of 40 dB40 \mathrm{~dB} . For each case, find the required value of RLR_{L} , the resulting 3 -dB frequency fHf_{H} , and the gain-bandwidth product. Comment on the tradeoff between gain and bandwidth.
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
5
    Figure 10.5.1    Figure 10.5.2 (a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at  g_{m}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o}=20 \mathrm{k} \Omega  and has  R_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as  C_{g s}=40 \mathrm{fF}  and  C_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground,  C_{L}=10 \mathrm{fF} . Find the overall de gain  G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency  f_{H} , and the gain-bandwidth product  f_{t} . To determine  f_{H} , use the method of open-circuit time constants and recall that the resistance seen by  C_{g d}  is given by  R_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where  R_{L}^{\prime}=R_{L} \| r_{o} . (b) To increase  f_{t} , the common-source transistor  Q_{1}  is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of  R_{\mathrm{sig}}, R_{L} , and  C_{L}  as in (a), assuming  Q_{1}  and  Q_{2}  are biased so that  g_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of  Q_{1}  and  Q_{2}  to have the same values as specified in (a) above, find  G_{v}, f_{H} , and  f_{t}  for the cascode amplifier. Recall that  R_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o}  and  R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} . In using the open-circuit time-constants method, adapt the formula given in (a) for  R_{g d}  to obtain  R_{g d 1} . By what factor is  f_{t}  increased?

Figure 10.5.1
    Figure 10.5.1    Figure 10.5.2 (a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at  g_{m}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o}=20 \mathrm{k} \Omega  and has  R_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as  C_{g s}=40 \mathrm{fF}  and  C_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground,  C_{L}=10 \mathrm{fF} . Find the overall de gain  G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency  f_{H} , and the gain-bandwidth product  f_{t} . To determine  f_{H} , use the method of open-circuit time constants and recall that the resistance seen by  C_{g d}  is given by  R_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where  R_{L}^{\prime}=R_{L} \| r_{o} . (b) To increase  f_{t} , the common-source transistor  Q_{1}  is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of  R_{\mathrm{sig}}, R_{L} , and  C_{L}  as in (a), assuming  Q_{1}  and  Q_{2}  are biased so that  g_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V}  and  r_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of  Q_{1}  and  Q_{2}  to have the same values as specified in (a) above, find  G_{v}, f_{H} , and  f_{t}  for the cascode amplifier. Recall that  R_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o}  and  R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} . In using the open-circuit time-constants method, adapt the formula given in (a) for  R_{g d}  to obtain  R_{g d 1} . By what factor is  f_{t}  increased?

Figure 10.5.2
(a) The MOSFET in the common-source amplifier in Fig. 10.5.1, where the dc bias arrangement is not shown, is operating at gm=2 mA/Vg_{m}=2 \mathrm{~mA} / \mathrm{V} and ro=20kΩr_{o}=20 \mathrm{k} \Omega and has Rsig =RL=20kΩR_{\text {sig }}=R_{L}=20 \mathrm{k} \Omega . The transistor capacitances are specified as Cgs=40fFC_{g s}=40 \mathrm{fF} and Cgd=Cdb=10fFC_{g d}=C_{d b}=10 \mathrm{fF} . Also, there is an additional capacitance between the output node and ground, CL=10fFC_{L}=10 \mathrm{fF} . Find the overall de gain GvVo/Vsig G_{v} \equiv V_{o} / V_{\text {sig }} , the upper 3-dB frequency fHf_{H} , and the gain-bandwidth product ftf_{t} . To determine fHf_{H} , use the method of open-circuit time constants and recall that the resistance seen by CgdC_{g d} is given by Rgd=(1+gmRL)Rsig +RLR_{g d}=\left(1+g_{m} R_{L}^{\prime}\right) R_{\text {sig }}+R_{L}^{\prime} , where RL=RLroR_{L}^{\prime}=R_{L} \| r_{o} .
(b) To increase ftf_{t} , the common-source transistor Q1Q_{1} is cascoded as shown in Fig. 10.5.2 (refer to Figure above), where the dc bias arrangement is not shown. For the same values of Rsig,RLR_{\mathrm{sig}}, R_{L} , and CLC_{L} as in (a), assuming Q1Q_{1} and Q2Q_{2} are biased so that gm1=gm2=2 mA/Vg_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V} and ro1=ro2=20kΩr_{o 1}=r_{o 2}=20 \mathrm{k} \Omega , and for the capacitances of Q1Q_{1} and Q2Q_{2} to have the same values as specified in (a) above, find Gv,fHG_{v}, f_{H} , and ftf_{t} for the cascode amplifier. Recall that Rout (gmro)roR_{\text {out }} \simeq\left(g_{m} r_{o}\right) r_{o} and Rin 2=1gm2+RLgm2ro2R_{\text {in } 2}=\frac{1}{g_{m 2}}+\frac{R_{L}}{g_{m 2} r_{o 2}} .
In using the open-circuit time-constants method, adapt the formula given in (a) for RgdR_{g d} to obtain Rgd1R_{g d 1} . By what factor is ftf_{t} increased?
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
6
The MOSFET in the common-source amplifier in Fig. 10.6.1
 The MOSFET in the common-source amplifier in Fig. 10.6.1    Figure 10.6.1 has  g_{m}=   5 \mathrm{~mA} / \mathrm{V}, r_{o}=20 \mathrm{k} \Omega, C_{g s}=5 \mathrm{pF} , and  C_{g d}=1 \mathrm{pF} , and the total capacitance at the output node,  C_{L} , is  10 \mathrm{pF} . (a) Find the value of the midband voltage gain. (b) Use the method of short-circuit time constants to determine the lower 3-dB frequency,  f_{L} . Which capacitor dominates the determination of  f_{L}  ? (c) Use the method of open-circuit time constants to determine the upper 3-dB frequency,  f_{H} . Which capacitor dominates the determination of  f_{H}  ?

Figure 10.6.1
has gm=g_{m}= 5 mA/V,ro=20kΩ,Cgs=5pF5 \mathrm{~mA} / \mathrm{V}, r_{o}=20 \mathrm{k} \Omega, C_{g s}=5 \mathrm{pF} , and Cgd=1pFC_{g d}=1 \mathrm{pF} , and the total capacitance at the output node, CLC_{L} , is 10pF10 \mathrm{pF} .
(a) Find the value of the midband voltage gain.
(b) Use the method of short-circuit time constants to determine the lower 3-dB frequency, fLf_{L} . Which capacitor dominates the determination of fLf_{L} ?
(c) Use the method of open-circuit time constants to determine the upper 3-dB frequency, fHf_{H} . Which capacitor dominates the determination of fHf_{H} ?
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
7
The amplifier in Fig. 10.7.1
 The amplifier in Fig. 10.7.1    Figure 10.7.1 has  R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10   \mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and  V_{C C}=15 \mathrm{~V} . (a) Assuming  \beta=\infty , find  R_{B 1}, R_{B 2}, R_{E} , and  R_{C}  to operate the BJT at a dc bias point characterized by  I_{C}=1 \mathrm{~mA}  and  V_{C}=7 \mathrm{~V} . Design for  V_{B}=5 \mathrm{~V}  and a voltage-divider current of  0.1 \mathrm{~mA} . (b) Find  r_{e}, g_{m} , and  r_{\pi} , assuming  \beta=100 . (c) At midband frequencies, find  R_{\text {in }}, V_{b} / V_{\text {sig }} ,  V_{o} / V_{b} , and  V_{o} / V_{\text {sig }} , assuming  \beta=100 . (d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency,  f_{L} . (e) If  C_{\pi}=10 \mathrm{pF}  and  C_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency  3 \mathrm{~dB}  frequency,  f_{H} .

Figure 10.7.1
has Rsig =1kΩ,CB=1μF,CE=10R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10 μF,CC=1μF,RL=8kΩ,VBE=0.7 V\mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and VCC=15 VV_{C C}=15 \mathrm{~V} .
(a) Assuming β=\beta=\infty , find RB1,RB2,RER_{B 1}, R_{B 2}, R_{E} , and RCR_{C} to operate the BJT at a dc bias point characterized by IC=1 mAI_{C}=1 \mathrm{~mA} and VC=7 VV_{C}=7 \mathrm{~V} . Design for VB=5 VV_{B}=5 \mathrm{~V} and a voltage-divider current of 0.1 mA0.1 \mathrm{~mA} .
(b) Find re,gmr_{e}, g_{m} , and rπr_{\pi} , assuming β=100\beta=100 .
(c) At midband frequencies, find Rin ,Vb/Vsig R_{\text {in }}, V_{b} / V_{\text {sig }} , Vo/VbV_{o} / V_{b} , and Vo/Vsig V_{o} / V_{\text {sig }} , assuming β=100\beta=100 .
(d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency, fLf_{L} .
(e) If Cπ=10pFC_{\pi}=10 \mathrm{pF} and Cμ=1pFC_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency 3 dB3 \mathrm{~dB} frequency, fHf_{H} .
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
8
For the amplifier circuit in Fig. 10.8.1
 For the amplifier circuit in Fig. 10.8.1    , assume that the BJT has  V_{B E}=   0.7 \mathrm{~V}  and  \beta=100  and neglect the Early effect. (a) Find the dc bias current  I_{C}  and the de collector voltage  V_{C} . (b) Give the small-signal equivalent circuit together with values of all its components, utilizing the T model for the BJT. (c) Find the input resistance  R_{\text {in }} . (d) Find output resistance  R_{\text {out }} . (e) Find the overall midband gain  V_{o} / V_{\text {sig. }} . (f) Use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency  f_{L} .

, assume that the BJT has VBE=V_{B E}= 0.7 V0.7 \mathrm{~V} and β=100\beta=100 and neglect the Early effect.
(a) Find the dc bias current ICI_{C} and the de collector voltage VCV_{C} .
(b) Give the small-signal equivalent circuit together with values of all its components, utilizing the T model for the BJT.
(c) Find the input resistance Rin R_{\text {in }} .
(d) Find output resistance Rout R_{\text {out }} .
(e) Find the overall midband gain Vo/Vsig. V_{o} / V_{\text {sig. }} .
(f) Use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency fLf_{L} .
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
9
The MOSFET in the common-source amplifier in Fig. 10.9.1
 The MOSFET in the common-source amplifier in Fig. 10.9.1    Figure 10.9.1 is operating at  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and has  C_{g s}=1 \mathrm{pF}  and  C_{g d}=0.2 \mathrm{pF} . Channel-length modulation is negligibly small. (a) Find the midband voltge gain in  \mathrm{dB} . (b) Find the upper 3-dB frequency,  f_{H} . (c) Find the value of  C_{G}  that places the pole it introduces at  1 \mathrm{~Hz} . (d) Find the value of  C_{S}  that places the pole it introduces at  100 \mathrm{~Hz}  (e) Find the value of  C_{D}  that places the pole it introduces at  10 \mathrm{~Hz} . (f) Sketch and carefully label the Bode plot for the gain magnitude. Specify the lower 3-dB frequency,  f_{L} .

Figure 10.9.1
is operating at gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and has Cgs=1pFC_{g s}=1 \mathrm{pF} and Cgd=0.2pFC_{g d}=0.2 \mathrm{pF} . Channel-length modulation is negligibly small.
(a) Find the midband voltge gain in dB\mathrm{dB} .
(b) Find the upper 3-dB frequency, fHf_{H} .
(c) Find the value of CGC_{G} that places the pole it introduces at 1 Hz1 \mathrm{~Hz} .
(d) Find the value of CSC_{S} that places the pole it introduces at 100 Hz100 \mathrm{~Hz}
(e) Find the value of CDC_{D} that places the pole it introduces at 10 Hz10 \mathrm{~Hz} .
(f) Sketch and carefully label the Bode plot for the gain magnitude. Specify the lower 3-dB frequency, fLf_{L} .
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
10
    In the common-source amplifier shown in Fig. 10.10.1, the signal source has a zero average and provides de continuity to ground. The MOSFET has  V_{t}=1 \mathrm{~V}  and  k_{n}=16 \mathrm{~mA} / \mathrm{V}^{2} . (a) Find the value of  g_{m}  at which the device is operating. (b) Find the midband gain  V_{o} / V_{\text {sig }}  in  \mathrm{V} / \mathrm{V}  and in dB. (c) Find the value of  C_{S}  that places the lower 3-dB frequency  \omega_{L}  at  100 \mathrm{rad} / \mathrm{s} . (d) If  C_{g s}=1 \mathrm{pF}  and  C_{g d}=0.2 \mathrm{pF} , find the value of the upper  3-\mathrm{dB}  frequency,  \omega_{H} . (e) It is desired to double  \omega_{H}  by changing the value of  g_{m}  (through changing the bias current  I  ), find the required value of  I , the new value of the midband gain (in  \mathrm{V} / \mathrm{V}  and in  \mathrm{dB}  ), and the new value of  \omega_{L} .

In the common-source amplifier shown in Fig. 10.10.1, the signal source has a zero average and provides de continuity to ground. The MOSFET has Vt=1 VV_{t}=1 \mathrm{~V} and kn=16 mA/V2k_{n}=16 \mathrm{~mA} / \mathrm{V}^{2} .
(a) Find the value of gmg_{m} at which the device is operating.
(b) Find the midband gain Vo/Vsig V_{o} / V_{\text {sig }} in V/V\mathrm{V} / \mathrm{V} and in dB.
(c) Find the value of CSC_{S} that places the lower 3-dB frequency ωL\omega_{L} at 100rad/s100 \mathrm{rad} / \mathrm{s} .
(d) If Cgs=1pFC_{g s}=1 \mathrm{pF} and Cgd=0.2pFC_{g d}=0.2 \mathrm{pF} , find the value of the upper 3dB3-\mathrm{dB} frequency, ωH\omega_{H} .
(e) It is desired to double ωH\omega_{H} by changing the value of gmg_{m} (through changing the bias current II ), find the required value of II , the new value of the midband gain (in V/V\mathrm{V} / \mathrm{V} and in dB\mathrm{dB} ), and the new value of ωL\omega_{L} .
Unlock Deck
Unlock for access to all 10 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 10 flashcards in this deck.