Deck 7: Feedback

Full screen (f)
exit full mode
Question
An amplifier with an open-loop gain of 1000 V/V1000 \mathrm{~V} / \mathrm{V} is connected in a feedback loop with the result that the closed-loop gain obtained is 10 V/V10 \mathrm{~V} / \mathrm{V} .
(a) Find the value of the amount of feedback, the loop gain, and the feedback factor.
(b) If the open-loop gain varies by ±10%\pm 10 \% , what is the corresponding variation of the closedloop gain?
(c) If the open-loop amplifier has 3-dB frequencies fL=1kHzf_{L}=1 \mathrm{kHz} and fH=100kHzf_{H}=100 \mathrm{kHz} , and the gain rolls off at the low and high frequency ends with a slope of 20 dB/decade20 \mathrm{~dB} / \mathrm{decade} , find the 3dB3-\mathrm{dB} frequencies of the closed-loop gain and sketch the Bode magnitude plot of both the open-loop and closed-loop gains (on the same axes).
Use Space or
up arrow
down arrow
to flip the card.
Question
    Figure 11.2.1 The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain  \mu=10^{3} , input resistance  R_{i d}=100 \mathrm{k} \Omega , and output resistance  r_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source  V_{S}  having a source resistance  R_{S}=10 \mathrm{k} \Omega , and a load resistance  R_{L}=   1 \mathrm{k} \Omega  is connected to the output terminal. (a) If it is required to obtain a closed-loop gain  A_{f} \equiv V_{o} / V_{S}  that is ideally  10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor  \beta  ? If  R_{1}=1 \mathrm{k} \Omega , what value must  R_{2}  have? (b) Give the complete  A  circuit and use it to determine  A, R_{i} , and  R_{o} . (c) Find the actual value of  A_{f}  realized. (d) Find the input resistance  R_{\text {in }}  of the feedback amplifier. (e) Find the output resistance  R_{\text {out }}  of the feedback amplifier. (f) If, due to temperature variation, the gain  \mu  changes by  10 \% , what percentage change do you expect  A_{f}  to have? (g) If the high-frequency response of the amplifier  \mu  is characterized by a drop of  20 \mathrm{~dB} /  decade with a 3-dB frequency of  10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain  A_{f}  to be? At what frequency will the magnitude of  A_{f}  become unity?<div style=padding-top: 35px>

Figure 11.2.1
The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain μ=103\mu=10^{3} , input resistance Rid=100kΩR_{i d}=100 \mathrm{k} \Omega , and output resistance ro=1kΩr_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source VSV_{S} having a source resistance RS=10kΩR_{S}=10 \mathrm{k} \Omega , and a load resistance RL=R_{L}= 1kΩ1 \mathrm{k} \Omega is connected to the output terminal.
(a) If it is required to obtain a closed-loop gain AfVo/VSA_{f} \equiv V_{o} / V_{S} that is ideally 10 V/V10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor β\beta ? If R1=1kΩR_{1}=1 \mathrm{k} \Omega , what value must R2R_{2} have?
(b) Give the complete AA circuit and use it to determine A,RiA, R_{i} , and RoR_{o} .
(c) Find the actual value of AfA_{f} realized.
(d) Find the input resistance Rin R_{\text {in }} of the feedback amplifier.
(e) Find the output resistance Rout R_{\text {out }} of the feedback amplifier.
(f) If, due to temperature variation, the gain μ\mu changes by 10%10 \% , what percentage change do you expect AfA_{f} to have?
(g) If the high-frequency response of the amplifier μ\mu is characterized by a drop of 20 dB/20 \mathrm{~dB} / decade with a 3-dB frequency of 10kHz10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain AfA_{f} to be? At what frequency will the magnitude of AfA_{f} become unity?
Question
    The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source  V_{S}  together with the resistance  R_{1}  to its Norton's equivalent circuit composed of current source  I_{S}=   V_{S} / R_{1}  together with a parallel resistance equal to  R_{1} . The amplifier  \mu  has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which  \mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega ,  r_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and  R_{2}=100 \mathrm{k} \Omega . (a) Find the  A  circuit and derive expressions for  A \equiv V_{o} / I_{S}, R_{i} , and  R_{o} . Evaluate these expressions to determine  A, R_{i} , and  R_{o} . (b) Find the  \beta  circuit and derive an expression for  \beta . Find the value of  \beta . (c) Find an expression for  A \beta  and its value. (d) Find the value of the amount of feedback. (e) Find the closed-loop gain and hence  V_{o} / V_{S} . (f) Find the value of  R_{\text {in }} . (g) Find the value of  R_{\text {out }} . (h) If  \mu  changes by  -10 \% , what is the resulting change in  V_{o} / V_{S}  ?<div style=padding-top: 35px>

The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source VSV_{S} together with the resistance R1R_{1} to its Norton's equivalent circuit composed of current source IS=I_{S}= VS/R1V_{S} / R_{1} together with a parallel resistance equal to R1R_{1} . The amplifier μ\mu has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which μ=103 V/V,Rid=1MΩ\mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega , ro=100Ω,R1=1kΩr_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and R2=100kΩR_{2}=100 \mathrm{k} \Omega .
(a) Find the AA circuit and derive expressions for AVo/IS,RiA \equiv V_{o} / I_{S}, R_{i} , and RoR_{o} . Evaluate these expressions to determine A,RiA, R_{i} , and RoR_{o} .
(b) Find the β\beta circuit and derive an expression for β\beta . Find the value of β\beta .
(c) Find an expression for AβA \beta and its value.
(d) Find the value of the amount of feedback.
(e) Find the closed-loop gain and hence Vo/VSV_{o} / V_{S} .
(f) Find the value of Rin R_{\text {in }} .
(g) Find the value of Rout R_{\text {out }} .
(h) If μ\mu changes by 10%-10 \% , what is the resulting change in Vo/VSV_{o} / V_{S} ?
Question
    Figure 11.4.1 The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network  \left(R_{1}, R_{2}\right)  to sample the output voltage  V_{o} . Though the bias details are not shown, it is known that each of  Q_{1} ,  Q_{2} , and  Q_{3}  is operating at a  g_{m}  of  2 \mathrm{~mA} / \mathrm{V}  and that their  r_{o}  's are very large. (a) Give the  \beta  circuit and find the value of  \beta . (b) What do you estimate the approximate value of the closed-loop gain  A_{f}=V_{o} / V_{S}  to be? (c) Give the  A  circuit and calculate the value of  A . (d) Use the results of (a) and (c) to determine  A_{f}  and compare the result to the value obtained in (b). (e) Find the output resistance  R_{O}  of the  A  circuit. (f) Find the output resistance  R_{\text {out }}  of the closedloop amplifier. (g) If the open-loop gain  A  is found to have a dominant high-frequency pole at  1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain  A_{f}  to be? (h) If for some reason  g_{m}  of  Q_{2}  decreases by  20 \% , what is the corresponding percentage decrease in  A_{f}  ?<div style=padding-top: 35px>

Figure 11.4.1
The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network (R1,R2)\left(R_{1}, R_{2}\right) to sample the output voltage VoV_{o} . Though the bias details are not shown, it is known that each of Q1Q_{1} , Q2Q_{2} , and Q3Q_{3} is operating at a gmg_{m} of 2 mA/V2 \mathrm{~mA} / \mathrm{V} and that their ror_{o} 's are very large.
(a) Give the β\beta circuit and find the value of β\beta .
(b) What do you estimate the approximate value of the closed-loop gain Af=Vo/VSA_{f}=V_{o} / V_{S} to be?
(c) Give the AA circuit and calculate the value of AA .
(d) Use the results of (a) and (c) to determine AfA_{f} and compare the result to the value obtained in (b).
(e) Find the output resistance ROR_{O} of the AA circuit.
(f) Find the output resistance Rout R_{\text {out }} of the closedloop amplifier.
(g) If the open-loop gain AA is found to have a dominant high-frequency pole at 1MHz1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain AfA_{f} to be?
(h) If for some reason gmg_{m} of Q2Q_{2} decreases by 20%20 \% , what is the corresponding percentage decrease in AfA_{f} ?
Question
The feedback voltage amplifier in Fig. 11.5.1
 The feedback voltage amplifier in Fig. 11.5.1   Figure 11.5.1 utilizes the series-shunt feedback topology with the feedback network composed of  R_{1}  and  R_{2} . The following component values are given:  R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}=   11 \mathrm{k} \Omega , and  R_{5}=300 \Omega . The BJTs have  \beta=100 ,  \left|V_{B E}\right|=0.7 \mathrm{~V} , and  r_{o}=\infty . The capacitors  C_{1}, C_{2} ,  C_{3} , and  C_{4}  are very large. (a) Find values for  R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and  R_{C 2}  so as to establish the following de conditions:  V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}=   I_{E 2}=1 \mathrm{~mA} , and  I=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper. (b) Supply the  A  circuit and find the values of  A ,  R_{i} , and  R_{O} . (c) Supply the  \beta  circuit and find the value of  \beta . (d) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} , the input resistance  R_{\mathrm{in}} , and the output resistance  R_{\text {out. }} <div style=padding-top: 35px>
Figure 11.5.1
utilizes the series-shunt feedback topology with the feedback network composed of R1R_{1} and R2R_{2} . The following component values are given: RS=5kΩ,R1=1kΩ,R2=R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}= 11kΩ11 \mathrm{k} \Omega , and R5=300ΩR_{5}=300 \Omega . The BJTs have β=100\beta=100 , VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} , and ro=r_{o}=\infty . The capacitors C1,C2C_{1}, C_{2} , C3C_{3} , and C4C_{4} are very large.
(a) Find values for RB1,RB2,R3,RC1,R4R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and RC2R_{C 2} so as to establish the following de conditions: VB1=+4 V,VC1=+6 V,VC2=+4 V,IE1=V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}= IE2=1 mAI_{E 2}=1 \mathrm{~mA} , and I=0.1 mAI=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper.
(b) Supply the AA circuit and find the values of AA , RiR_{i} , and ROR_{O} .
(c) Supply the β\beta circuit and find the value of β\beta .
(d) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} , the input resistance RinR_{\mathrm{in}} , and the output resistance Rout. R_{\text {out. }}
Question
Figure 11.6.1 (refer to Figure below)
 Figure 11.6.1 (refer to Figure below)    Figure 11.6.1 shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:  A_{1}  has a differential input resistance of  82 \mathrm{k} \Omega , an open-circuit differential voltage gain of  20 \mathrm{~V} / \mathrm{V} , and an output resistance of  3.2 \mathrm{k} \Omega .  A_{2}  has an input resistance of  5 \mathrm{k} \Omega , a shortcircuit tranconductance of  20 \mathrm{~mA} / \mathrm{V} , and an output resistance of  20 \mathrm{k} \Omega .  A_{3}  has an input resistance of  20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of  1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source having  R_{S}=9 \mathrm{k} \Omega  and is connected to a load  R_{L}=1 \mathrm{k} \Omega . The feedback network has  R_{1}=10 \mathrm{k} \Omega  and  R_{2}=90 \mathrm{k} \Omega . (a) Give the  A  circuit and find the value of  A . (b) Find  \beta  and the amount of feedback. (c) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} . (d) Find the input resistance  R_{\text {in }} . (e) Find the output resistance  R_{\text {out }} . (f) If the high-frequency response of the openloop gain  A  is dominated by a pole at  1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain? (g) If for some reason the gain of  A_{1}  drops to half its nominal value, what is the percentage change in  A_{f}  ?<div style=padding-top: 35px>

Figure 11.6.1
shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:
A1A_{1} has a differential input resistance of 82kΩ82 \mathrm{k} \Omega , an open-circuit differential voltage gain of 20 V/V20 \mathrm{~V} / \mathrm{V} , and an output resistance of 3.2kΩ3.2 \mathrm{k} \Omega .
A2A_{2} has an input resistance of 5kΩ5 \mathrm{k} \Omega , a shortcircuit tranconductance of 20 mA/V20 \mathrm{~mA} / \mathrm{V} , and an output resistance of 20kΩ20 \mathrm{k} \Omega . A3A_{3} has an input resistance of 20kΩ20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of 1kΩ1 \mathrm{k} \Omega .
The feedback amplifier is fed with a signal source having RS=9kΩR_{S}=9 \mathrm{k} \Omega and is connected to a load RL=1kΩR_{L}=1 \mathrm{k} \Omega . The feedback network has R1=10kΩR_{1}=10 \mathrm{k} \Omega and R2=90kΩR_{2}=90 \mathrm{k} \Omega .
(a) Give the AA circuit and find the value of AA .
(b) Find β\beta and the amount of feedback.
(c) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} .
(d) Find the input resistance Rin R_{\text {in }} .
(e) Find the output resistance Rout R_{\text {out }} .
(f) If the high-frequency response of the openloop gain AA is dominated by a pole at 1kHz1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain?
(g) If for some reason the gain of A1A_{1} drops to half its nominal value, what is the percentage change in AfA_{f} ?
Question
In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors CC1C_{C 1} and CC2C_{C 2} are very large and thus act as perfect short circuits at
 In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors  C_{C 1}  and  C_{C 2}  are very large and thus act as perfect short circuits at    Figure 11.7.1 the frequencies of interest. Transistors  Q_{1}, Q_{2} , and  Q_{3}  are identical and are operating at identical dc bias conditions so that each has  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and  r_{o}=10 \mathrm{k} \Omega . (a) Replacing the signal source  V_{S}  and  R_{S}  with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology. (b) Give the  \beta  circuit and determine the value of  \beta . (c) Give the ideal value of the closed-loop gain and hence of the voltage gain  V_{o} / V_{S} . (d) Provide the  A  circuit and determine the values of  A, R_{i} , and  R_{o} . (e) Find the values of  A_{f}, R_{i f} , and  R_{o f} . (f) Find the actual value of voltage gain  V_{o} / V_{S}  realized and compare to the approximate value found in (c). (g) Find the value of  R_{\text {in }} , (h) Find the value of  R_{\text {out }} . (i) If  V_{s}  is  100 \mathrm{mV} , find the magnitudes of the signals at the gates of  Q_{1}, Q_{2} , and  Q_{3}  and at the output (i.e.,  V_{o}  ).<div style=padding-top: 35px>

Figure 11.7.1
the frequencies of interest. Transistors Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} are identical and are operating at identical dc bias conditions so that each has gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and ro=10kΩr_{o}=10 \mathrm{k} \Omega .
(a) Replacing the signal source VSV_{S} and RSR_{S} with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology.
(b) Give the β\beta circuit and determine the value of β\beta .
(c) Give the ideal value of the closed-loop gain and hence of the voltage gain Vo/VSV_{o} / V_{S} .
(d) Provide the AA circuit and determine the values of A,RiA, R_{i} , and RoR_{o} .
(e) Find the values of Af,RifA_{f}, R_{i f} , and RofR_{o f} .
(f) Find the actual value of voltage gain Vo/VSV_{o} / V_{S} realized and compare to the approximate value found in (c).
(g) Find the value of Rin R_{\text {in }} ,
(h) Find the value of Rout R_{\text {out }} .
(i) If VsV_{s} is 100mV100 \mathrm{mV} , find the magnitudes of the signals at the gates of Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} and at the output (i.e., VoV_{o} ).
Question
    Figure 11.8.1 Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider  \left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and has an Early voltage  \left|V_{A}\right|=20 \mathrm{~V} . (a) Find expressions for  \beta  and for the ideal value of the closed-loop gain  V_{o} / V_{s} . Hence, find the value of  \beta  and the ideal value of  V_{o} / V_{S} . (b) Give the  A  circuit and expressions for  A  and  R_{O} . Hence, find the values of the open-loop gain  A  and the open-loop output resistances  R_{O} . (c) Find the value of the closed-loop gain  A_{f} \equiv   V_{o} / V_{S} . Compare to the ideal value found in (a). (d) Find the value of the output resistance  R_{\text {out }} .<div style=padding-top: 35px>

Figure 11.8.1
Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider (R1,R2)\left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and has an Early voltage VA=20 V\left|V_{A}\right|=20 \mathrm{~V} .
(a) Find expressions for β\beta and for the ideal value of the closed-loop gain Vo/VsV_{o} / V_{s} . Hence, find the value of β\beta and the ideal value of Vo/VSV_{o} / V_{S} .
(b) Give the AA circuit and expressions for AA and ROR_{O} . Hence, find the values of the open-loop gain AA and the open-loop output resistances ROR_{O} .
(c) Find the value of the closed-loop gain AfA_{f} \equiv Vo/VSV_{o} / V_{S} . Compare to the ideal value found in (a).
(d) Find the value of the output resistance Rout R_{\text {out }} .
Question
    Figure 11.9.1 An op amp has a dc gain of  100 \mathrm{~dB}  and three real-axis poles with frequencies  f_{P 1}=10^{4} \mathrm{~Hz} ,  f_{P 2}=10^{5} \mathrm{~Hz} , and  f_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where  C_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and  C_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at  f_{P 1}  and that the output circuit is responsible for the pole at  f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity. (a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from  0.1 \mathrm{~Hz}  to  10^{7} \mathrm{~Hz} . (b) If the frequency compensation is achieved by connecting a capacitor  C_{C}  in parallel with  C_{1} , find the required value of  C_{C}  and sketch the modified gain response on your Bode plot. (c) If the frequency compensation is achieved by placing a capacitor  C_{f}  in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of  C_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.<div style=padding-top: 35px>

Figure 11.9.1
An op amp has a dc gain of 100 dB100 \mathrm{~dB} and three real-axis poles with frequencies fP1=104 Hzf_{P 1}=10^{4} \mathrm{~Hz} , fP2=105 Hzf_{P 2}=10^{5} \mathrm{~Hz} , and fP3=106 Hzf_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where C1=100pF,gm=20 mA/VC_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and C2=10pFC_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at fP1f_{P 1} and that the output circuit is responsible for the pole at fP2f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity.
(a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from 0.1 Hz0.1 \mathrm{~Hz} to 107 Hz10^{7} \mathrm{~Hz} .
(b) If the frequency compensation is achieved by connecting a capacitor CCC_{C} in parallel with C1C_{1} , find the required value of CCC_{C} and sketch the modified gain response on your Bode plot.
(c) If the frequency compensation is achieved by placing a capacitor CfC_{f} in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of CfC_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/9
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Feedback
1
An amplifier with an open-loop gain of 1000 V/V1000 \mathrm{~V} / \mathrm{V} is connected in a feedback loop with the result that the closed-loop gain obtained is 10 V/V10 \mathrm{~V} / \mathrm{V} .
(a) Find the value of the amount of feedback, the loop gain, and the feedback factor.
(b) If the open-loop gain varies by ±10%\pm 10 \% , what is the corresponding variation of the closedloop gain?
(c) If the open-loop amplifier has 3-dB frequencies fL=1kHzf_{L}=1 \mathrm{kHz} and fH=100kHzf_{H}=100 \mathrm{kHz} , and the gain rolls off at the low and high frequency ends with a slope of 20 dB/decade20 \mathrm{~dB} / \mathrm{decade} , find the 3dB3-\mathrm{dB} frequencies of the closed-loop gain and sketch the Bode magnitude plot of both the open-loop and closed-loop gains (on the same axes).
A=1000 V/V,Af=10 V/VA=1000 \mathrm{~V} / \mathrm{V}, \quad A_{f}=10 \mathrm{~V} / \mathrm{V}
(a)
Af=A1+Aβ10=10001+Aβ\begin{aligned}A_{f} & =\frac{A}{1+A \beta} \\10 & =\frac{1000}{1+A \beta}\end{aligned}
Thus,
Amount of feedback 1+Aβ=100\equiv 1+A \beta=100
 Loop gain Aβ=99\text { Loop gain } \equiv A \beta=99
Feedback factor β=991000=0.099 V/V\equiv \beta=\frac{99}{1000}=0.099 \mathrm{~V} / \mathrm{V}
(b)
ΔAfAf=A/A1+Aβ=±10%100=±0.1%\begin{aligned}\frac{\Delta A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\& =\frac{ \pm 10 \%}{100}= \pm 0.1 \%\end{aligned}
(c)
fL=1kHz,fH=100kHzfLf=fL1+Aβ=1000100=10 HzfHf=(1+Aβ)fH=100×100=10MHz\begin{aligned}f_{L} & =1 \mathrm{kHz}, \quad f_{H}=100 \mathrm{kHz} \\f_{L f} & =\frac{f_{L}}{1+A \beta}=\frac{1000}{100}=10 \mathrm{~Hz} \\f_{H f} & =(1+A \beta) f_{H}=100 \times 100=10 \mathrm{MHz}\end{aligned}
A=1000 \mathrm{~V} / \mathrm{V}, \quad A_{f}=10 \mathrm{~V} / \mathrm{V}  (a)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ 10 & =\frac{1000}{1+A \beta} \end{aligned}  Thus, Amount of feedback  \equiv 1+A \beta=100   \text { Loop gain } \equiv A \beta=99  Feedback factor  \equiv \beta=\frac{99}{1000}=0.099 \mathrm{~V} / \mathrm{V}  (b)  \begin{aligned} \frac{\Delta A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{ \pm 10 \%}{100}= \pm 0.1 \% \end{aligned}  (c)  \begin{aligned} f_{L} & =1 \mathrm{kHz}, \quad f_{H}=100 \mathrm{kHz} \\ f_{L f} & =\frac{f_{L}}{1+A \beta}=\frac{1000}{100}=10 \mathrm{~Hz} \\ f_{H f} & =(1+A \beta) f_{H}=100 \times 100=10 \mathrm{MHz} \end{aligned}     Figure 11.1.1 Sketches of the Bode plots for  |A|  and  \left|A_{f}\right|  are shown in Fig. 11.1.1.

Figure 11.1.1
Sketches of the Bode plots for A|A| and Af\left|A_{f}\right| are shown in Fig. 11.1.1.
2
    Figure 11.2.1 The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain  \mu=10^{3} , input resistance  R_{i d}=100 \mathrm{k} \Omega , and output resistance  r_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source  V_{S}  having a source resistance  R_{S}=10 \mathrm{k} \Omega , and a load resistance  R_{L}=   1 \mathrm{k} \Omega  is connected to the output terminal. (a) If it is required to obtain a closed-loop gain  A_{f} \equiv V_{o} / V_{S}  that is ideally  10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor  \beta  ? If  R_{1}=1 \mathrm{k} \Omega , what value must  R_{2}  have? (b) Give the complete  A  circuit and use it to determine  A, R_{i} , and  R_{o} . (c) Find the actual value of  A_{f}  realized. (d) Find the input resistance  R_{\text {in }}  of the feedback amplifier. (e) Find the output resistance  R_{\text {out }}  of the feedback amplifier. (f) If, due to temperature variation, the gain  \mu  changes by  10 \% , what percentage change do you expect  A_{f}  to have? (g) If the high-frequency response of the amplifier  \mu  is characterized by a drop of  20 \mathrm{~dB} /  decade with a 3-dB frequency of  10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain  A_{f}  to be? At what frequency will the magnitude of  A_{f}  become unity?

Figure 11.2.1
The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain μ=103\mu=10^{3} , input resistance Rid=100kΩR_{i d}=100 \mathrm{k} \Omega , and output resistance ro=1kΩr_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source VSV_{S} having a source resistance RS=10kΩR_{S}=10 \mathrm{k} \Omega , and a load resistance RL=R_{L}= 1kΩ1 \mathrm{k} \Omega is connected to the output terminal.
(a) If it is required to obtain a closed-loop gain AfVo/VSA_{f} \equiv V_{o} / V_{S} that is ideally 10 V/V10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor β\beta ? If R1=1kΩR_{1}=1 \mathrm{k} \Omega , what value must R2R_{2} have?
(b) Give the complete AA circuit and use it to determine A,RiA, R_{i} , and RoR_{o} .
(c) Find the actual value of AfA_{f} realized.
(d) Find the input resistance Rin R_{\text {in }} of the feedback amplifier.
(e) Find the output resistance Rout R_{\text {out }} of the feedback amplifier.
(f) If, due to temperature variation, the gain μ\mu changes by 10%10 \% , what percentage change do you expect AfA_{f} to have?
(g) If the high-frequency response of the amplifier μ\mu is characterized by a drop of 20 dB/20 \mathrm{~dB} / decade with a 3-dB frequency of 10kHz10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain AfA_{f} to be? At what frequency will the magnitude of AfA_{f} become unity?
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned}

Figure 11.2.1
(a) For AfA_{f} to be ideally 10 V/V10 \mathrm{~V} / \mathrm{V} ,
β=1Af=0.1 V/V\beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned}

Figure 11.2.2
From the feedback network shown in Fig. 11.2.2,
β=R1R1+R20.1=11+R2R2=9kΩ\begin{aligned}\beta & =\frac{R_{1}}{R_{1}+R_{2}} \\0.1 & =\frac{1}{1+R_{2}} \\\Rightarrow R_{2} & =9 \mathrm{k} \Omega\end{aligned}
(b) The AA circuit is shown in Fig. 11.2.3 (refer to Figure below).
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned} Figure 11.2.3
A=VoVi=V1ViVoV1=RidRS+Rid+(R1R2)μRL(R1+R2)[RL(R1+R2)]+ro=10010+100+(19)×103×1(1+9)[1(1+9)]+1=429.4 V/VRi=RS+Rid+(R1R2)=10+100+(19)=110.9kΩRO=RL(R1+R2)ro=1(1+9)1=476.2Ω\begin{aligned}A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\& =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\& =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\& =429.4 \mathrm{~V} / \mathrm{V} \\R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\& =10+100+(1 \| 9) \\& =110.9 \mathrm{k} \Omega \\R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\& =1\|(1+9)\| 1 \\& =476.2 \Omega\end{aligned}
(c)
Af=A1+Aβ=429.41+429.4×0.1=9.77 V/V\begin{aligned}A_{f} & =\frac{A}{1+A \beta} \\& =\frac{429.4}{1+429.4 \times 0.1} \\& =9.77 \mathrm{~V} / \mathrm{V}\end{aligned}
(d)
Rif=(1+Aβ)Ri=(1+429.4×0.1)×110.9=4.873MΩRin =RifRS=487310=4.863MΩ\begin{aligned}R_{i f} & =(1+A \beta) R_{i} \\& =(1+429.4 \times 0.1) \times 110.9 \\& =4.873 \mathrm{M} \Omega \\R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\& =4.863 \mathrm{M} \Omega\end{aligned}
(e)
Rof=Ro1+Aβ=476.243.94=10.84Ω\begin{aligned}R_{o f} & =\frac{R_{o}}{1+A \beta} \\& =\frac{476.2}{43.94}=10.84 \Omega\end{aligned}
Since
1Rof =1RL+1RoutRout=10.96Ω\begin{aligned}\frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\\Rightarrow R_{\mathrm{out}} & =10.96 \Omega\end{aligned}
(f)
μμ=10%AA=10%AfAf=A/A1+Aβ=1043.94=0.23%\begin{aligned}\frac{\triangle \mu}{\mu} & =10 \% \\\Rightarrow \frac{\triangle A}{A} & =10 \% \\\Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\& =\frac{10}{43.94}=0.23 \%\end{aligned}
(g)
fHf=(1+Aβ)fH=43.94×10=439.4kHz\begin{aligned}f_{H f} & =(1+A \beta) f_{H} \\& =43.94 \times 10 \\& =439.4 \mathrm{kHz}\end{aligned}
Af\left|A_{f}\right| reaches unity at
ft=Af×fHf=9.77×439.4=4.29MHz\begin{aligned}f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\& =4.29 \mathrm{MHz}\end{aligned}
3
    The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source  V_{S}  together with the resistance  R_{1}  to its Norton's equivalent circuit composed of current source  I_{S}=   V_{S} / R_{1}  together with a parallel resistance equal to  R_{1} . The amplifier  \mu  has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which  \mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega ,  r_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and  R_{2}=100 \mathrm{k} \Omega . (a) Find the  A  circuit and derive expressions for  A \equiv V_{o} / I_{S}, R_{i} , and  R_{o} . Evaluate these expressions to determine  A, R_{i} , and  R_{o} . (b) Find the  \beta  circuit and derive an expression for  \beta . Find the value of  \beta . (c) Find an expression for  A \beta  and its value. (d) Find the value of the amount of feedback. (e) Find the closed-loop gain and hence  V_{o} / V_{S} . (f) Find the value of  R_{\text {in }} . (g) Find the value of  R_{\text {out }} . (h) If  \mu  changes by  -10 \% , what is the resulting change in  V_{o} / V_{S}  ?

The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source VSV_{S} together with the resistance R1R_{1} to its Norton's equivalent circuit composed of current source IS=I_{S}= VS/R1V_{S} / R_{1} together with a parallel resistance equal to R1R_{1} . The amplifier μ\mu has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which μ=103 V/V,Rid=1MΩ\mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega , ro=100Ω,R1=1kΩr_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and R2=100kΩR_{2}=100 \mathrm{k} \Omega .
(a) Find the AA circuit and derive expressions for AVo/IS,RiA \equiv V_{o} / I_{S}, R_{i} , and RoR_{o} . Evaluate these expressions to determine A,RiA, R_{i} , and RoR_{o} .
(b) Find the β\beta circuit and derive an expression for β\beta . Find the value of β\beta .
(c) Find an expression for AβA \beta and its value.
(d) Find the value of the amount of feedback.
(e) Find the closed-loop gain and hence Vo/VSV_{o} / V_{S} .
(f) Find the value of Rin R_{\text {in }} .
(g) Find the value of Rout R_{\text {out }} .
(h) If μ\mu changes by 10%-10 \% , what is the resulting change in Vo/VSV_{o} / V_{S} ?
    (a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with  V_{S}  and  R_{1}  converted to the Norton form. The  \beta  circuit is shown in Fig. 11.3.2(b) and the  A  circuit is shown in Fig. 11.3.2(c). From the latter,  \begin{aligned} R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\ & =1\|100\| 1000=989.1 \Omega \\ V_{1} & =-I_{i} R_{i} \\ V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}} \end{aligned}  Thus,  \begin{aligned} A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\ & =-988.1 \mathrm{k} \Omega \\ R_{O} & =R_{2} \| r_{o} \\ R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega \end{aligned}  (b) The  \beta  circuit is shown in Fig. 11.3.2(b).  \begin{aligned} & \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\ & \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V} \end{aligned}  (c)  \begin{aligned} A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\ A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\ & =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\ & =9.88 \end{aligned}  (d)  1+A \beta=10.88  (e)  \begin{gathered} A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\ \frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V} \end{gathered}  (f)  R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega  But,  \begin{aligned} \frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\ \Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega \end{aligned}  (g)  R_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega  (h)  \begin{aligned} & \frac{\triangle \mu}{\mu}=-10 \% \\ & \Rightarrow \frac{\triangle A}{A}=-10 \% \\ & \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\ & \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \% \end{aligned}     Figure 11.4.3

(a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with VSV_{S} and R1R_{1} converted to the Norton form. The β\beta circuit is shown in Fig. 11.3.2(b) and the AA circuit is shown in Fig. 11.3.2(c). From the latter,
Ri=R1R2Rid=11001000=989.1ΩV1=IiRiVo=μV1R2R2+ro\begin{aligned}R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\& =1\|100\| 1000=989.1 \Omega \\V_{1} & =-I_{i} R_{i} \\V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}}\end{aligned}
Thus,
AVoIi=μRiR2R2+roA=μ(R1R2Rid)R2R2+roA=103×0.9891×100100+0.1=988.1kΩRO=R2roRO=100kΩ100Ω=99.9Ω\begin{aligned}A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\& =-988.1 \mathrm{k} \Omega \\R_{O} & =R_{2} \| r_{o} \\R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega\end{aligned}
(b) The β\beta circuit is shown in Fig. 11.3.2(b).
βIfVo=1R2β=1100=0.01 mA/V\begin{aligned}& \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\& \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V}\end{aligned}
(c)
Aβ=μ(R1R2Rid)R2R2+ro×1R2Aβ=μR1R2RidR2+ro=103×989.1Ω100.1kΩ=9.88\begin{aligned}A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\& =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\& =9.88\end{aligned}
(d)
1+Aβ=10.881+A \beta=10.88
(e)
AfVoIS=A1+Aβ=988.1kΩ10.88=90.8kΩVoVS=VoISR1=90.8kΩ1kΩ=90.8 V/V\begin{gathered}A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\\frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V}\end{gathered}
(f)
Rif=Ri1+Aβ=989.110.88=90.9ΩR_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega
But,
1Rif =1Rin +1R1Rin =1/(190.911000)=100Ω\begin{aligned}\frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\\Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega\end{aligned}
(g)
Rout=Rof=Ro1+Aβ=99.910.88=9.2ΩR_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega
(h)
μμ=10%AA=10%AfAf=A/A1+Aβ=1010.88=0.92% Change in VoVS is 0.92%\begin{aligned}& \frac{\triangle \mu}{\mu}=-10 \% \\& \Rightarrow \frac{\triangle A}{A}=-10 \% \\& \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\& \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \%\end{aligned}
    (a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with  V_{S}  and  R_{1}  converted to the Norton form. The  \beta  circuit is shown in Fig. 11.3.2(b) and the  A  circuit is shown in Fig. 11.3.2(c). From the latter,  \begin{aligned} R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\ & =1\|100\| 1000=989.1 \Omega \\ V_{1} & =-I_{i} R_{i} \\ V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}} \end{aligned}  Thus,  \begin{aligned} A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\ & =-988.1 \mathrm{k} \Omega \\ R_{O} & =R_{2} \| r_{o} \\ R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega \end{aligned}  (b) The  \beta  circuit is shown in Fig. 11.3.2(b).  \begin{aligned} & \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\ & \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V} \end{aligned}  (c)  \begin{aligned} A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\ A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\ & =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\ & =9.88 \end{aligned}  (d)  1+A \beta=10.88  (e)  \begin{gathered} A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\ \frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V} \end{gathered}  (f)  R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega  But,  \begin{aligned} \frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\ \Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega \end{aligned}  (g)  R_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega  (h)  \begin{aligned} & \frac{\triangle \mu}{\mu}=-10 \% \\ & \Rightarrow \frac{\triangle A}{A}=-10 \% \\ & \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\ & \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \% \end{aligned}     Figure 11.4.3

Figure 11.4.3
4
    Figure 11.4.1 The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network  \left(R_{1}, R_{2}\right)  to sample the output voltage  V_{o} . Though the bias details are not shown, it is known that each of  Q_{1} ,  Q_{2} , and  Q_{3}  is operating at a  g_{m}  of  2 \mathrm{~mA} / \mathrm{V}  and that their  r_{o}  's are very large. (a) Give the  \beta  circuit and find the value of  \beta . (b) What do you estimate the approximate value of the closed-loop gain  A_{f}=V_{o} / V_{S}  to be? (c) Give the  A  circuit and calculate the value of  A . (d) Use the results of (a) and (c) to determine  A_{f}  and compare the result to the value obtained in (b). (e) Find the output resistance  R_{O}  of the  A  circuit. (f) Find the output resistance  R_{\text {out }}  of the closedloop amplifier. (g) If the open-loop gain  A  is found to have a dominant high-frequency pole at  1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain  A_{f}  to be? (h) If for some reason  g_{m}  of  Q_{2}  decreases by  20 \% , what is the corresponding percentage decrease in  A_{f}  ?

Figure 11.4.1
The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network (R1,R2)\left(R_{1}, R_{2}\right) to sample the output voltage VoV_{o} . Though the bias details are not shown, it is known that each of Q1Q_{1} , Q2Q_{2} , and Q3Q_{3} is operating at a gmg_{m} of 2 mA/V2 \mathrm{~mA} / \mathrm{V} and that their ror_{o} 's are very large.
(a) Give the β\beta circuit and find the value of β\beta .
(b) What do you estimate the approximate value of the closed-loop gain Af=Vo/VSA_{f}=V_{o} / V_{S} to be?
(c) Give the AA circuit and calculate the value of AA .
(d) Use the results of (a) and (c) to determine AfA_{f} and compare the result to the value obtained in (b).
(e) Find the output resistance ROR_{O} of the AA circuit.
(f) Find the output resistance Rout R_{\text {out }} of the closedloop amplifier.
(g) If the open-loop gain AA is found to have a dominant high-frequency pole at 1MHz1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain AfA_{f} to be?
(h) If for some reason gmg_{m} of Q2Q_{2} decreases by 20%20 \% , what is the corresponding percentage decrease in AfA_{f} ?
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
5
The feedback voltage amplifier in Fig. 11.5.1
 The feedback voltage amplifier in Fig. 11.5.1   Figure 11.5.1 utilizes the series-shunt feedback topology with the feedback network composed of  R_{1}  and  R_{2} . The following component values are given:  R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}=   11 \mathrm{k} \Omega , and  R_{5}=300 \Omega . The BJTs have  \beta=100 ,  \left|V_{B E}\right|=0.7 \mathrm{~V} , and  r_{o}=\infty . The capacitors  C_{1}, C_{2} ,  C_{3} , and  C_{4}  are very large. (a) Find values for  R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and  R_{C 2}  so as to establish the following de conditions:  V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}=   I_{E 2}=1 \mathrm{~mA} , and  I=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper. (b) Supply the  A  circuit and find the values of  A ,  R_{i} , and  R_{O} . (c) Supply the  \beta  circuit and find the value of  \beta . (d) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} , the input resistance  R_{\mathrm{in}} , and the output resistance  R_{\text {out. }}
Figure 11.5.1
utilizes the series-shunt feedback topology with the feedback network composed of R1R_{1} and R2R_{2} . The following component values are given: RS=5kΩ,R1=1kΩ,R2=R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}= 11kΩ11 \mathrm{k} \Omega , and R5=300ΩR_{5}=300 \Omega . The BJTs have β=100\beta=100 , VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} , and ro=r_{o}=\infty . The capacitors C1,C2C_{1}, C_{2} , C3C_{3} , and C4C_{4} are very large.
(a) Find values for RB1,RB2,R3,RC1,R4R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and RC2R_{C 2} so as to establish the following de conditions: VB1=+4 V,VC1=+6 V,VC2=+4 V,IE1=V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}= IE2=1 mAI_{E 2}=1 \mathrm{~mA} , and I=0.1 mAI=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper.
(b) Supply the AA circuit and find the values of AA , RiR_{i} , and ROR_{O} .
(c) Supply the β\beta circuit and find the value of β\beta .
(d) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} , the input resistance RinR_{\mathrm{in}} , and the output resistance Rout. R_{\text {out. }}
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
6
Figure 11.6.1 (refer to Figure below)
 Figure 11.6.1 (refer to Figure below)    Figure 11.6.1 shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:  A_{1}  has a differential input resistance of  82 \mathrm{k} \Omega , an open-circuit differential voltage gain of  20 \mathrm{~V} / \mathrm{V} , and an output resistance of  3.2 \mathrm{k} \Omega .  A_{2}  has an input resistance of  5 \mathrm{k} \Omega , a shortcircuit tranconductance of  20 \mathrm{~mA} / \mathrm{V} , and an output resistance of  20 \mathrm{k} \Omega .  A_{3}  has an input resistance of  20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of  1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source having  R_{S}=9 \mathrm{k} \Omega  and is connected to a load  R_{L}=1 \mathrm{k} \Omega . The feedback network has  R_{1}=10 \mathrm{k} \Omega  and  R_{2}=90 \mathrm{k} \Omega . (a) Give the  A  circuit and find the value of  A . (b) Find  \beta  and the amount of feedback. (c) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} . (d) Find the input resistance  R_{\text {in }} . (e) Find the output resistance  R_{\text {out }} . (f) If the high-frequency response of the openloop gain  A  is dominated by a pole at  1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain? (g) If for some reason the gain of  A_{1}  drops to half its nominal value, what is the percentage change in  A_{f}  ?

Figure 11.6.1
shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:
A1A_{1} has a differential input resistance of 82kΩ82 \mathrm{k} \Omega , an open-circuit differential voltage gain of 20 V/V20 \mathrm{~V} / \mathrm{V} , and an output resistance of 3.2kΩ3.2 \mathrm{k} \Omega .
A2A_{2} has an input resistance of 5kΩ5 \mathrm{k} \Omega , a shortcircuit tranconductance of 20 mA/V20 \mathrm{~mA} / \mathrm{V} , and an output resistance of 20kΩ20 \mathrm{k} \Omega . A3A_{3} has an input resistance of 20kΩ20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of 1kΩ1 \mathrm{k} \Omega .
The feedback amplifier is fed with a signal source having RS=9kΩR_{S}=9 \mathrm{k} \Omega and is connected to a load RL=1kΩR_{L}=1 \mathrm{k} \Omega . The feedback network has R1=10kΩR_{1}=10 \mathrm{k} \Omega and R2=90kΩR_{2}=90 \mathrm{k} \Omega .
(a) Give the AA circuit and find the value of AA .
(b) Find β\beta and the amount of feedback.
(c) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} .
(d) Find the input resistance Rin R_{\text {in }} .
(e) Find the output resistance Rout R_{\text {out }} .
(f) If the high-frequency response of the openloop gain AA is dominated by a pole at 1kHz1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain?
(g) If for some reason the gain of A1A_{1} drops to half its nominal value, what is the percentage change in AfA_{f} ?
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
7
In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors CC1C_{C 1} and CC2C_{C 2} are very large and thus act as perfect short circuits at
 In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors  C_{C 1}  and  C_{C 2}  are very large and thus act as perfect short circuits at    Figure 11.7.1 the frequencies of interest. Transistors  Q_{1}, Q_{2} , and  Q_{3}  are identical and are operating at identical dc bias conditions so that each has  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and  r_{o}=10 \mathrm{k} \Omega . (a) Replacing the signal source  V_{S}  and  R_{S}  with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology. (b) Give the  \beta  circuit and determine the value of  \beta . (c) Give the ideal value of the closed-loop gain and hence of the voltage gain  V_{o} / V_{S} . (d) Provide the  A  circuit and determine the values of  A, R_{i} , and  R_{o} . (e) Find the values of  A_{f}, R_{i f} , and  R_{o f} . (f) Find the actual value of voltage gain  V_{o} / V_{S}  realized and compare to the approximate value found in (c). (g) Find the value of  R_{\text {in }} , (h) Find the value of  R_{\text {out }} . (i) If  V_{s}  is  100 \mathrm{mV} , find the magnitudes of the signals at the gates of  Q_{1}, Q_{2} , and  Q_{3}  and at the output (i.e.,  V_{o}  ).

Figure 11.7.1
the frequencies of interest. Transistors Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} are identical and are operating at identical dc bias conditions so that each has gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and ro=10kΩr_{o}=10 \mathrm{k} \Omega .
(a) Replacing the signal source VSV_{S} and RSR_{S} with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology.
(b) Give the β\beta circuit and determine the value of β\beta .
(c) Give the ideal value of the closed-loop gain and hence of the voltage gain Vo/VSV_{o} / V_{S} .
(d) Provide the AA circuit and determine the values of A,RiA, R_{i} , and RoR_{o} .
(e) Find the values of Af,RifA_{f}, R_{i f} , and RofR_{o f} .
(f) Find the actual value of voltage gain Vo/VSV_{o} / V_{S} realized and compare to the approximate value found in (c).
(g) Find the value of Rin R_{\text {in }} ,
(h) Find the value of Rout R_{\text {out }} .
(i) If VsV_{s} is 100mV100 \mathrm{mV} , find the magnitudes of the signals at the gates of Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} and at the output (i.e., VoV_{o} ).
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
8
    Figure 11.8.1 Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider  \left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and has an Early voltage  \left|V_{A}\right|=20 \mathrm{~V} . (a) Find expressions for  \beta  and for the ideal value of the closed-loop gain  V_{o} / V_{s} . Hence, find the value of  \beta  and the ideal value of  V_{o} / V_{S} . (b) Give the  A  circuit and expressions for  A  and  R_{O} . Hence, find the values of the open-loop gain  A  and the open-loop output resistances  R_{O} . (c) Find the value of the closed-loop gain  A_{f} \equiv   V_{o} / V_{S} . Compare to the ideal value found in (a). (d) Find the value of the output resistance  R_{\text {out }} .

Figure 11.8.1
Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider (R1,R2)\left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and has an Early voltage VA=20 V\left|V_{A}\right|=20 \mathrm{~V} .
(a) Find expressions for β\beta and for the ideal value of the closed-loop gain Vo/VsV_{o} / V_{s} . Hence, find the value of β\beta and the ideal value of Vo/VSV_{o} / V_{S} .
(b) Give the AA circuit and expressions for AA and ROR_{O} . Hence, find the values of the open-loop gain AA and the open-loop output resistances ROR_{O} .
(c) Find the value of the closed-loop gain AfA_{f} \equiv Vo/VSV_{o} / V_{S} . Compare to the ideal value found in (a).
(d) Find the value of the output resistance Rout R_{\text {out }} .
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
9
    Figure 11.9.1 An op amp has a dc gain of  100 \mathrm{~dB}  and three real-axis poles with frequencies  f_{P 1}=10^{4} \mathrm{~Hz} ,  f_{P 2}=10^{5} \mathrm{~Hz} , and  f_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where  C_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and  C_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at  f_{P 1}  and that the output circuit is responsible for the pole at  f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity. (a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from  0.1 \mathrm{~Hz}  to  10^{7} \mathrm{~Hz} . (b) If the frequency compensation is achieved by connecting a capacitor  C_{C}  in parallel with  C_{1} , find the required value of  C_{C}  and sketch the modified gain response on your Bode plot. (c) If the frequency compensation is achieved by placing a capacitor  C_{f}  in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of  C_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.

Figure 11.9.1
An op amp has a dc gain of 100 dB100 \mathrm{~dB} and three real-axis poles with frequencies fP1=104 Hzf_{P 1}=10^{4} \mathrm{~Hz} , fP2=105 Hzf_{P 2}=10^{5} \mathrm{~Hz} , and fP3=106 Hzf_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where C1=100pF,gm=20 mA/VC_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and C2=10pFC_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at fP1f_{P 1} and that the output circuit is responsible for the pole at fP2f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity.
(a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from 0.1 Hz0.1 \mathrm{~Hz} to 107 Hz10^{7} \mathrm{~Hz} .
(b) If the frequency compensation is achieved by connecting a capacitor CCC_{C} in parallel with C1C_{1} , find the required value of CCC_{C} and sketch the modified gain response on your Bode plot.
(c) If the frequency compensation is achieved by placing a capacitor CfC_{f} in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of CfC_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.
Unlock Deck
Unlock for access to all 9 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 9 flashcards in this deck.