Deck 1: MOS Field-Effect Transistors Mosfets

Full screen (f)
exit full mode
Question
    Figure 5.1.1 (a) For the circuit shown in Fig. 5.1.1(a), show (neglecting  \lambda  ) that  V=V_{t}+\sqrt{\frac{2 I}{k_{n}^{\prime}(W / L)}}  (b) The MOSFETs in the circuit of Fig. 5.1.1(b) [6 points] have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2} , and  \lambda=0 . Find  (W / L)_{1},(W / L)_{2} , and  (W / L)_{3}  to obtain the reference voltages shown.<div style=padding-top: 35px>

Figure 5.1.1
(a) For the circuit shown in Fig. 5.1.1(a), show (neglecting λ\lambda ) that
V=Vt+2Ikn(W/L)V=V_{t}+\sqrt{\frac{2 I}{k_{n}^{\prime}(W / L)}}
(b) The MOSFETs in the circuit of Fig. 5.1.1(b) [6 points] have Vt=0.4 V,kn=0.4 mA/V2V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2} , and λ=0\lambda=0 . Find (W/L)1,(W/L)2(W / L)_{1},(W / L)_{2} , and (W/L)3(W / L)_{3} to obtain the reference voltages shown.
Use Space or
up arrow
down arrow
to flip the card.
Question
   (a)    (b) Figure 5.2.1 The MOSFETs in the circuits of Fig. 5.2.1 have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and  L=   0.4 \mu \mathrm{m} . (a) For the circuit in Fig. 5.2.1(a), find the values of  W  and  R_{D}  to operate the MOSFET at  I_{D}=   0.2 \mathrm{~mA}  and  V_{D}=0.6 \mathrm{~V} . (b) For the circuit in Fig. 5.2.1(b), find  W_{1}, W_{2} , and  W_{3}  to obtain  V_{1}=0.5 \mathrm{~V}  and  V_{2}=1.1 \mathrm{~V} .<div style=padding-top: 35px>
(a)
   (a)    (b) Figure 5.2.1 The MOSFETs in the circuits of Fig. 5.2.1 have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and  L=   0.4 \mu \mathrm{m} . (a) For the circuit in Fig. 5.2.1(a), find the values of  W  and  R_{D}  to operate the MOSFET at  I_{D}=   0.2 \mathrm{~mA}  and  V_{D}=0.6 \mathrm{~V} . (b) For the circuit in Fig. 5.2.1(b), find  W_{1}, W_{2} , and  W_{3}  to obtain  V_{1}=0.5 \mathrm{~V}  and  V_{2}=1.1 \mathrm{~V} .<div style=padding-top: 35px>

(b)
Figure 5.2.1
The MOSFETs in the circuits of Fig. 5.2.1 have Vt=0.4 V,kn=0.4 mA/V2,λ=0V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and L=L= 0.4μm0.4 \mu \mathrm{m} .
(a) For the circuit in Fig. 5.2.1(a), find the values of WW and RDR_{D} to operate the MOSFET at ID=I_{D}= 0.2 mA0.2 \mathrm{~mA} and VD=0.6 VV_{D}=0.6 \mathrm{~V} .
(b) For the circuit in Fig. 5.2.1(b), find W1,W2W_{1}, W_{2} , and W3W_{3} to obtain V1=0.5 VV_{1}=0.5 \mathrm{~V} and V2=1.1 VV_{2}=1.1 \mathrm{~V} .
Question
    Figure 5.3.1 The MOSFET in Fig. 5.3.1 has  V_{t}=0.5 \mathrm{~V}, k_{n}^{\prime}=   0.4 \mathrm{~mA} / \mathrm{V}^{2}, V_{A}=10 \mathrm{~V} , and  W / L=10 . Find the value of  R_{D}  that results in i.  V_{D}=0.1 \mathrm{~V}  ii.  V_{D}=1.5 \mathrm{~V}  In each case, find  I_{D}  and the incremental drain-tosource resistance of the MOSFET.<div style=padding-top: 35px>

Figure 5.3.1
The MOSFET in Fig. 5.3.1 has Vt=0.5 V,kn=V_{t}=0.5 \mathrm{~V}, k_{n}^{\prime}= 0.4 mA/V2,VA=10 V0.4 \mathrm{~mA} / \mathrm{V}^{2}, V_{A}=10 \mathrm{~V} , and W/L=10W / L=10 . Find the value of RDR_{D} that results in
i. VD=0.1 VV_{D}=0.1 \mathrm{~V}
ii. VD=1.5 VV_{D}=1.5 \mathrm{~V}
In each case, find IDI_{D} and the incremental drain-tosource resistance of the MOSFET.
Question
    Figure 5.4.1 The MOSFET in the circuit of Fig. 5.4.1 has  V_{t}=   1 \mathrm{~V}  and  k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2} , and the Early effect can be neglected. (a) Find the values of  R_{S}  and  R_{D}  that result in the MOSFET operating with an overdrive voltage of  0.5 \mathrm{~V}  and a drain voltage of  1.5 \mathrm{~V} . What is the resulting  I_{D}  value? (b) If  R_{L}  is reduced from  15 \mathrm{k} \Omega  to  10 \mathrm{k} \Omega , what does  V_{D}  become? (c) If  R_{L}  is disconnected, what does  V_{D}  become? (d) With  R_{L}  disconnected, what is the largest  R_{D}  that can be used while the MOSFET is remaining in saturation?<div style=padding-top: 35px>

Figure 5.4.1
The MOSFET in the circuit of Fig. 5.4.1 has Vt=V_{t}= 1 V1 \mathrm{~V} and kn=2 mA/V2k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2} , and the Early effect can be neglected.
(a) Find the values of RSR_{S} and RDR_{D} that result in the MOSFET operating with an overdrive voltage of 0.5 V0.5 \mathrm{~V} and a drain voltage of 1.5 V1.5 \mathrm{~V} . What is the resulting IDI_{D} value?
(b) If RLR_{L} is reduced from 15kΩ15 \mathrm{k} \Omega to 10kΩ10 \mathrm{k} \Omega , what does VDV_{D} become?
(c) If RLR_{L} is disconnected, what does VDV_{D} become?
(d) With RLR_{L} disconnected, what is the largest RDR_{D} that can be used while the MOSFET is remaining in saturation?
Question
    Figure 5.5.1 The MOSFETs in the circuits of Fig. 5.5.1 have  k=1 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=1 \mathrm{~V} , and  \lambda=0 . (a) For the circuit in Fig. 5.5.1(a), find the values of  R_{D}  and  R_{S}  that result in the MOSFET operating at the edge of the saturation region with  I_{D}=0.1 \mathrm{~mA} . (b) For the circuit in Fig. 5.5.1(b), find  I_{D}  and  R_{D} . (c) For the circuit in Fig. 5.5.1(c), find  I_{D N}, I_{D P} , and  V_{O} . Also, find the drain-to-source incremental resistance of each of  Q_{N}  and  Q_{P} .<div style=padding-top: 35px>

Figure 5.5.1
The MOSFETs in the circuits of Fig. 5.5.1 have k=1 mA/V2,Vt=1 Vk=1 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=1 \mathrm{~V} , and λ=0\lambda=0 .
(a) For the circuit in Fig. 5.5.1(a), find the values of RDR_{D} and RSR_{S} that result in the MOSFET operating at the edge of the saturation region with ID=0.1 mAI_{D}=0.1 \mathrm{~mA} .
(b) For the circuit in Fig. 5.5.1(b), find IDI_{D} and RDR_{D} .
(c) For the circuit in Fig. 5.5.1(c), find IDN,IDPI_{D N}, I_{D P} , and VOV_{O} . Also, find the drain-to-source incremental resistance of each of QNQ_{N} and QPQ_{P} .
Question
    Figure 5.6.1 The transistors in the circuit of Fig. 5.6.1 have  k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2}  and  V_{t n}=-V_{t p}=0.4 \mathrm{~V} . Find  v_{O}  for each of the following cases: (a)  v_{I}=0 \mathrm{~V}  (b)  v_{I}=+1 \mathrm{~V}  (c)  v_{I}=-1 \mathrm{~V}  (d)  v_{I}=+2 \mathrm{~V}  (e)  v_{I}=-2 \mathrm{~V} <div style=padding-top: 35px>

Figure 5.6.1
The transistors in the circuit of Fig. 5.6.1 have kn=kp=2 mA/V2k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2} and Vtn=Vtp=0.4 VV_{t n}=-V_{t p}=0.4 \mathrm{~V} . Find vOv_{O} for each of the following cases:
(a) vI=0 Vv_{I}=0 \mathrm{~V}
(b) vI=+1 Vv_{I}=+1 \mathrm{~V}
(c) vI=1 Vv_{I}=-1 \mathrm{~V}
(d) vI=+2 Vv_{I}=+2 \mathrm{~V}
(e) vI=2 Vv_{I}=-2 \mathrm{~V}
Question
   Figure 5.7.1 The MOSFETs in the circuit of Fig. 5.7.1 have  \mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2}, V_{t}=0.4 \mathrm{~V}, \lambda=0, L=   0.4 \mu \mathrm{m}, W_{1}=2 \mu \mathrm{m} , and  W_{2}=W_{3}=10 \mu \mathrm{m} . Find  R  to obtain a reference current  I_{\mathrm{REF}}  of  40 \mu \mathrm{A} . Also, find the values of  V_{1}, I_{2}, V_{2} , and  V_{3} .<div style=padding-top: 35px>
Figure 5.7.1
The MOSFETs in the circuit of Fig. 5.7.1 have μnCox=400μA/V2,Vt=0.4 V,λ=0,L=\mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2}, V_{t}=0.4 \mathrm{~V}, \lambda=0, L= 0.4μm,W1=2μm0.4 \mu \mathrm{m}, W_{1}=2 \mu \mathrm{m} , and W2=W3=10μmW_{2}=W_{3}=10 \mu \mathrm{m} . Find RR to obtain a reference current IREFI_{\mathrm{REF}} of 40μA40 \mu \mathrm{A} . Also, find the values of V1,I2,V2V_{1}, I_{2}, V_{2} , and V3V_{3} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/7
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: MOS Field-Effect Transistors Mosfets
1
    Figure 5.1.1 (a) For the circuit shown in Fig. 5.1.1(a), show (neglecting  \lambda  ) that  V=V_{t}+\sqrt{\frac{2 I}{k_{n}^{\prime}(W / L)}}  (b) The MOSFETs in the circuit of Fig. 5.1.1(b) [6 points] have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2} , and  \lambda=0 . Find  (W / L)_{1},(W / L)_{2} , and  (W / L)_{3}  to obtain the reference voltages shown.

Figure 5.1.1
(a) For the circuit shown in Fig. 5.1.1(a), show (neglecting λ\lambda ) that
V=Vt+2Ikn(W/L)V=V_{t}+\sqrt{\frac{2 I}{k_{n}^{\prime}(W / L)}}
(b) The MOSFETs in the circuit of Fig. 5.1.1(b) [6 points] have Vt=0.4 V,kn=0.4 mA/V2V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2} , and λ=0\lambda=0 . Find (W/L)1,(W/L)2(W / L)_{1},(W / L)_{2} , and (W/L)3(W / L)_{3} to obtain the reference voltages shown.
(a)
(a)    Figure 5.1.1(a)

Figure 5.1.1(a)
(a)    Figure 5.1.1(a)
(a)    Figure 5.1.1(a)
(a)    Figure 5.1.1(a)
2
   (a)    (b) Figure 5.2.1 The MOSFETs in the circuits of Fig. 5.2.1 have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and  L=   0.4 \mu \mathrm{m} . (a) For the circuit in Fig. 5.2.1(a), find the values of  W  and  R_{D}  to operate the MOSFET at  I_{D}=   0.2 \mathrm{~mA}  and  V_{D}=0.6 \mathrm{~V} . (b) For the circuit in Fig. 5.2.1(b), find  W_{1}, W_{2} , and  W_{3}  to obtain  V_{1}=0.5 \mathrm{~V}  and  V_{2}=1.1 \mathrm{~V} .
(a)
   (a)    (b) Figure 5.2.1 The MOSFETs in the circuits of Fig. 5.2.1 have  V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and  L=   0.4 \mu \mathrm{m} . (a) For the circuit in Fig. 5.2.1(a), find the values of  W  and  R_{D}  to operate the MOSFET at  I_{D}=   0.2 \mathrm{~mA}  and  V_{D}=0.6 \mathrm{~V} . (b) For the circuit in Fig. 5.2.1(b), find  W_{1}, W_{2} , and  W_{3}  to obtain  V_{1}=0.5 \mathrm{~V}  and  V_{2}=1.1 \mathrm{~V} .

(b)
Figure 5.2.1
The MOSFETs in the circuits of Fig. 5.2.1 have Vt=0.4 V,kn=0.4 mA/V2,λ=0V_{t}=0.4 \mathrm{~V}, k_{n}^{\prime}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0 , and L=L= 0.4μm0.4 \mu \mathrm{m} .
(a) For the circuit in Fig. 5.2.1(a), find the values of WW and RDR_{D} to operate the MOSFET at ID=I_{D}= 0.2 mA0.2 \mathrm{~mA} and VD=0.6 VV_{D}=0.6 \mathrm{~V} .
(b) For the circuit in Fig. 5.2.1(b), find W1,W2W_{1}, W_{2} , and W3W_{3} to obtain V1=0.5 VV_{1}=0.5 \mathrm{~V} and V2=1.1 VV_{2}=1.1 \mathrm{~V} .


3
    Figure 5.3.1 The MOSFET in Fig. 5.3.1 has  V_{t}=0.5 \mathrm{~V}, k_{n}^{\prime}=   0.4 \mathrm{~mA} / \mathrm{V}^{2}, V_{A}=10 \mathrm{~V} , and  W / L=10 . Find the value of  R_{D}  that results in i.  V_{D}=0.1 \mathrm{~V}  ii.  V_{D}=1.5 \mathrm{~V}  In each case, find  I_{D}  and the incremental drain-tosource resistance of the MOSFET.

Figure 5.3.1
The MOSFET in Fig. 5.3.1 has Vt=0.5 V,kn=V_{t}=0.5 \mathrm{~V}, k_{n}^{\prime}= 0.4 mA/V2,VA=10 V0.4 \mathrm{~mA} / \mathrm{V}^{2}, V_{A}=10 \mathrm{~V} , and W/L=10W / L=10 . Find the value of RDR_{D} that results in
i. VD=0.1 VV_{D}=0.1 \mathrm{~V}
ii. VD=1.5 VV_{D}=1.5 \mathrm{~V}
In each case, find IDI_{D} and the incremental drain-tosource resistance of the MOSFET.


4
    Figure 5.4.1 The MOSFET in the circuit of Fig. 5.4.1 has  V_{t}=   1 \mathrm{~V}  and  k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2} , and the Early effect can be neglected. (a) Find the values of  R_{S}  and  R_{D}  that result in the MOSFET operating with an overdrive voltage of  0.5 \mathrm{~V}  and a drain voltage of  1.5 \mathrm{~V} . What is the resulting  I_{D}  value? (b) If  R_{L}  is reduced from  15 \mathrm{k} \Omega  to  10 \mathrm{k} \Omega , what does  V_{D}  become? (c) If  R_{L}  is disconnected, what does  V_{D}  become? (d) With  R_{L}  disconnected, what is the largest  R_{D}  that can be used while the MOSFET is remaining in saturation?

Figure 5.4.1
The MOSFET in the circuit of Fig. 5.4.1 has Vt=V_{t}= 1 V1 \mathrm{~V} and kn=2 mA/V2k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2} , and the Early effect can be neglected.
(a) Find the values of RSR_{S} and RDR_{D} that result in the MOSFET operating with an overdrive voltage of 0.5 V0.5 \mathrm{~V} and a drain voltage of 1.5 V1.5 \mathrm{~V} . What is the resulting IDI_{D} value?
(b) If RLR_{L} is reduced from 15kΩ15 \mathrm{k} \Omega to 10kΩ10 \mathrm{k} \Omega , what does VDV_{D} become?
(c) If RLR_{L} is disconnected, what does VDV_{D} become?
(d) With RLR_{L} disconnected, what is the largest RDR_{D} that can be used while the MOSFET is remaining in saturation?
Unlock Deck
Unlock for access to all 7 flashcards in this deck.
Unlock Deck
k this deck
5
    Figure 5.5.1 The MOSFETs in the circuits of Fig. 5.5.1 have  k=1 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=1 \mathrm{~V} , and  \lambda=0 . (a) For the circuit in Fig. 5.5.1(a), find the values of  R_{D}  and  R_{S}  that result in the MOSFET operating at the edge of the saturation region with  I_{D}=0.1 \mathrm{~mA} . (b) For the circuit in Fig. 5.5.1(b), find  I_{D}  and  R_{D} . (c) For the circuit in Fig. 5.5.1(c), find  I_{D N}, I_{D P} , and  V_{O} . Also, find the drain-to-source incremental resistance of each of  Q_{N}  and  Q_{P} .

Figure 5.5.1
The MOSFETs in the circuits of Fig. 5.5.1 have k=1 mA/V2,Vt=1 Vk=1 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=1 \mathrm{~V} , and λ=0\lambda=0 .
(a) For the circuit in Fig. 5.5.1(a), find the values of RDR_{D} and RSR_{S} that result in the MOSFET operating at the edge of the saturation region with ID=0.1 mAI_{D}=0.1 \mathrm{~mA} .
(b) For the circuit in Fig. 5.5.1(b), find IDI_{D} and RDR_{D} .
(c) For the circuit in Fig. 5.5.1(c), find IDN,IDPI_{D N}, I_{D P} , and VOV_{O} . Also, find the drain-to-source incremental resistance of each of QNQ_{N} and QPQ_{P} .
Unlock Deck
Unlock for access to all 7 flashcards in this deck.
Unlock Deck
k this deck
6
    Figure 5.6.1 The transistors in the circuit of Fig. 5.6.1 have  k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2}  and  V_{t n}=-V_{t p}=0.4 \mathrm{~V} . Find  v_{O}  for each of the following cases: (a)  v_{I}=0 \mathrm{~V}  (b)  v_{I}=+1 \mathrm{~V}  (c)  v_{I}=-1 \mathrm{~V}  (d)  v_{I}=+2 \mathrm{~V}  (e)  v_{I}=-2 \mathrm{~V}

Figure 5.6.1
The transistors in the circuit of Fig. 5.6.1 have kn=kp=2 mA/V2k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2} and Vtn=Vtp=0.4 VV_{t n}=-V_{t p}=0.4 \mathrm{~V} . Find vOv_{O} for each of the following cases:
(a) vI=0 Vv_{I}=0 \mathrm{~V}
(b) vI=+1 Vv_{I}=+1 \mathrm{~V}
(c) vI=1 Vv_{I}=-1 \mathrm{~V}
(d) vI=+2 Vv_{I}=+2 \mathrm{~V}
(e) vI=2 Vv_{I}=-2 \mathrm{~V}
Unlock Deck
Unlock for access to all 7 flashcards in this deck.
Unlock Deck
k this deck
7
   Figure 5.7.1 The MOSFETs in the circuit of Fig. 5.7.1 have  \mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2}, V_{t}=0.4 \mathrm{~V}, \lambda=0, L=   0.4 \mu \mathrm{m}, W_{1}=2 \mu \mathrm{m} , and  W_{2}=W_{3}=10 \mu \mathrm{m} . Find  R  to obtain a reference current  I_{\mathrm{REF}}  of  40 \mu \mathrm{A} . Also, find the values of  V_{1}, I_{2}, V_{2} , and  V_{3} .
Figure 5.7.1
The MOSFETs in the circuit of Fig. 5.7.1 have μnCox=400μA/V2,Vt=0.4 V,λ=0,L=\mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2}, V_{t}=0.4 \mathrm{~V}, \lambda=0, L= 0.4μm,W1=2μm0.4 \mu \mathrm{m}, W_{1}=2 \mu \mathrm{m} , and W2=W3=10μmW_{2}=W_{3}=10 \mu \mathrm{m} . Find RR to obtain a reference current IREFI_{\mathrm{REF}} of 40μA40 \mu \mathrm{A} . Also, find the values of V1,I2,V2V_{1}, I_{2}, V_{2} , and V3V_{3} .
Unlock Deck
Unlock for access to all 7 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 7 flashcards in this deck.