Deck 3: Transmission Line Parameters

Full screen (f)
exit full mode
Question
The Aluminum Electrical Conductor Handbook lists a dc resistance of 0.01552ohm0.01552 \mathrm{ohm} per 1000ft1000 \mathrm{ft} at 20C20^{\circ} \mathrm{C} and a 60Hz60-\mathrm{Hz} resistance of 0.0951ohm0.0951 \mathrm{ohm} per mile at 50C50^{\circ} \mathrm{C} for the allaluminum Marigold conductor, which has 61 strands and whose size is 1113kcmil1113 \mathrm{kcmil} . Assuming an increase in resistance of 1.6%1.6 \% for spiraling, calculate and verify the dc resistance. Then calculate the dc resistance at 50C50^{\circ} \mathrm{C} , and determine the percentage increase due to skin effect.
Use Space or
up arrow
down arrow
to flip the card.
Question
One thousand circular mils or 1kcmil1 \mathrm{kcmil} is sometimes designated by the abbreviation MCM. Data for commercial bare aluminum electrical conductors lists a 60Hz60-\mathrm{Hz} resistance of 0.0740ohm0.0740 \mathrm{ohm} per kilometer at 75C75^{\circ} \mathrm{C} for a 954-MCM AAC conductor. (a) Determine the cross-sectional conducting area of this conductor in square meters. (b) Find the 60Hz60-\mathrm{Hz} resistance of this conductor in ohms per kilometer at 45C45^{\circ} \mathrm{C} .
Question
A 60Hz,765kV60-\mathrm{Hz}, 765-\mathrm{kV} three-phase overhead transmission line has four ACSR 1113kcmil1113 \mathrm{kcmil} 54/354 / 3 conductors per phase. Determine the 60Hz60-\mathrm{Hz} resistance of this line in ohms per kilometer per phase at 50C50^{\circ} \mathrm{C} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/3
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 3: Transmission Line Parameters
The Aluminum Electrical Conductor Handbook lists a dc resistance of 0.01552ohm0.01552 \mathrm{ohm} per 1000ft1000 \mathrm{ft} at 20C20^{\circ} \mathrm{C} and a 60Hz60-\mathrm{Hz} resistance of 0.0951ohm0.0951 \mathrm{ohm} per mile at 50C50^{\circ} \mathrm{C} for the allaluminum Marigold conductor, which has 61 strands and whose size is 1113kcmil1113 \mathrm{kcmil} . Assuming an increase in resistance of 1.6%1.6 \% for spiraling, calculate and verify the dc resistance. Then calculate the dc resistance at 50C50^{\circ} \mathrm{C} , and determine the percentage increase due to skin effect.
Rdc,20C=P20ClA=(17.00)(1000×1.016)1113×103=0.01552Ω10001Rdc,50C=Rdc,20C(50+T20+T)=0.01552(50+228.120+228.1)Rdc,50C=(0.01552)(1.1209)=0.01739Ω10001R60HƵ,50CRdc,50C=0.0951Ω/mi(0.01739Ω10001)(5.2810001mi)=0.09510.0918=1.035\begin{aligned}& R_{d c, 20^{\circ} \mathrm{C}}=\frac{P_{20^{\circ} \mathrm{C}} l}{A}=\frac{(17.00)(1000 \times 1.016)}{1113 \times 10^{3}}=\underline{\underline{0.01552}} \frac{\Omega}{1000^{1}} \\& R_{d c, 50^{\circ} \mathrm{C}}=R_{d c, 20^{\circ} \mathrm{C}}\left(\frac{50+T}{20+T}\right)=0.01552\left(\frac{50+228.1}{20+228.1}\right) \\& R_{d c, 50^{\circ} \mathrm{C}}=(0.01552)(1.1209)=\underline{0.01739} \frac{\Omega}{1000^{1}} \\& \frac{R_{60 \mathrm{HƵ}, 50^{\circ} \mathrm{C}}}{R_{d c, 50^{\circ} \mathrm{C}}}=\frac{0.0951 \Omega / \mathrm{mi}}{\left(0.01739 \frac{\Omega}{1000^{1}}\right)\left(5.28 \frac{1000^{1}}{\mathrm{mi}}\right)}=\frac{0.0951}{0.0918}=\underline{\underline{1.035}}\end{aligned}
The 60HƵ60 \mathrm{HƵ} resistance is 3.5%3.5 \% larger than the dc resistance, due to skin effect.
One thousand circular mils or 1kcmil1 \mathrm{kcmil} is sometimes designated by the abbreviation MCM. Data for commercial bare aluminum electrical conductors lists a 60Hz60-\mathrm{Hz} resistance of 0.0740ohm0.0740 \mathrm{ohm} per kilometer at 75C75^{\circ} \mathrm{C} for a 954-MCM AAC conductor. (a) Determine the cross-sectional conducting area of this conductor in square meters. (b) Find the 60Hz60-\mathrm{Hz} resistance of this conductor in ohms per kilometer at 45C45^{\circ} \mathrm{C} .
(a) 954MCM=(954×103cmil)(π4 sqmil 1cmil)(1in1000mil)2(.0254 m in )2954 \mathrm{MCM}=\left(954 \times 10^{3} \mathrm{cmil}\right)\left(\frac{\frac{\pi}{4} \text { sqmil }}{1 \mathrm{cmil}}\right)\left(\frac{1 \mathrm{in}}{1000 \mathrm{mil}}\right)^{2}\left(\frac{.0254 \mathrm{~m}}{\text { in }}\right)^{2}
=4.834×104 m2=\underline{\underline{4.834 \times 10^{-4}} \mathrm{~m}^{2}}
(b) R60 HƵ,45=R60 Hz,75(45+T75+T)R_{60 \mathrm{~HƵ}, 45^{\circ}}=R_{60 \mathrm{~Hz}, 75^{\circ}}\left(\frac{45+T}{75+T}\right)
=(0.0740)(45+228.175+228.1)=(0.0740)(0.9010)=0.0667Ω/km\begin{aligned}& =(0.0740)\left(\frac{45+228.1}{75+228.1}\right)=(0.0740)(0.9010) \\& =\underline{\underline{0.0667} \Omega / \mathrm{km}}\end{aligned}
A 60Hz,765kV60-\mathrm{Hz}, 765-\mathrm{kV} three-phase overhead transmission line has four ACSR 1113kcmil1113 \mathrm{kcmil} 54/354 / 3 conductors per phase. Determine the 60Hz60-\mathrm{Hz} resistance of this line in ohms per kilometer per phase at 50C50^{\circ} \mathrm{C} .
From Table A. 4
R60 HƵ,50C=(0.0969Ωmi)(1mi1.609 km)=0.0602Ωkm per conductor (at 75% current capacity) R_{60 \mathrm{~HƵ}, 50^{\circ} \mathrm{C}}=\left(0.0969 \frac{\Omega}{\mathrm{mi}}\right)\left(\frac{1 \mathrm{mi}}{1.609 \mathrm{~km}}\right)=0.0602 \frac{\Omega}{\mathrm{km}} \text { per conductor (at } 75 \% \text { current capacity) }
For 4 conductors per phase:
R60 HƵ,50C=0.06024=0.0151Ωkm per phase R_{60 \mathrm{~HƵ}, 50^{\circ} \mathrm{C}}=\frac{0.0602}{4}=\underline{\underline{0.0151}} \frac{\Omega}{\mathrm{km}} \text { per phase }
locked card icon
Unlock Deck
Unlock for access to all 3 flashcards in this deck.